1st Edition

Engineering Agile Big-Data Systems

By Kevin Feeney, Jim Davies, James Welch Copyright 2018
    434 Pages
    by River Publishers

    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems.

    Preface Acknowledgements List of Contributors List of Figures List of Tables List of Abbreviations 1 Introduction 2 ALIGNED Use Cases – Data and Software Engineering Challenges 3 Methodology 4 ALIGNED MetaModel Overview 5 Tools 6 Use Cases 7 Evaluation Appendix A – Requirements Index About the Editors


    Kevin Feeney, Jim Davies, James Welch