1st Edition

Engineering Tools for Environmental Risk Management 2. Environmental Toxicology

Edited By Katalin Gruiz, Tamas Meggyes, Eva Fenyvesi Copyright 2015
    596 Pages
    by CRC Press

    596 Pages
    by CRC Press

    Chemical substances, physical agents and built structures exhibit various types of hazard due to their inherent toxic, mutagenic, carcinogenic, reprotoxic and sensitizing character or damaging to the immune and hormone system. The first steps in managing an environment contaminated by chemical substances are characterization of hazards and quantification of their risks. Chemical models — using only analytical data — are still the most widely used applications for assessing potential adverse effects and the fate and behavior of chemicals in the environment. Chemical models rely on the assumption that the adverse effect is proportional to the concentration, which in most cases is incorrect. In this volume, other models such as biological and ecological or regression models are discussed in detail and compared.



    Environmental risk management has two subsections: risk assessment and risk reduction. Environmental risk, to a large extent, arises from the adverse effects of chemicals and contaminated land; that is why measuring and testing these effects plays a key role in risk management.



    “Environmental Toxicology” deals with direct measurement of adverse effects of pure chemicals or environmental samples. This book has therefore been created specifically for engineers and gives a general overview of environmental toxicology. It provides an overview of hundreds of standardized and nonstandardized, generic and site-specific, conventional and innovative, animal and alternative test methods, and demonstrates how to apply these results to the regulation and management of environmental risk. In addition to human, aquatic and terrestrial methods for measuring toxicity, new trends in environmental analytics and the integration and complementary use of chemical analyses and the testing of effects are described.



    Bioavailability and accessibility as key parameters are detailed and the interactive and dynamic characterization of contaminants in soil is introduced. Emphasis is placed on the evaluation and interpretation of environmental fate and adverse effect data as well as the simulation of environmental processes and effects in microcosms and mesocosms.

    1. Environmental toxicology –A general overview 2. Fate and behavior of chemical substances in the environment 3. Human toxicology 4. Aquatic toxicology 5. Terrestrial toxicology 6. Advanced methods for chemical characterization of soil pollutants 7. Bioaccessibility and bioavailability in risk assessment 8. Microcosm models and technological experiments 9. Data evaluation and interpretation in environmental toxicology

    Biography

    Katalin Gruiz is Associate Professor at Budapest University of Technlogy, Budapest, Hungary.
    She graduated in chemical engineering at Budapest University of Technology and Economics in 1975, received her doctorate in bioengineering and her Ph.D. in environmental engineering. Her main fields of activities are: teaching, consulting, research and development of engineering tools for risk-based environmental management, development and use of innovative technologies such as special environmental toxicity assays, integrated monitoring methods, biological and ecological remediation technologies for soils and waters, both for regulatory and engineering purposes. Prof. Gruiz has published 35 papers, 25 book chapters, more than hundred conference papers, edited 6 books and a special journal edition. She has coordinated a number of Hungarian research projects and participated in European ones. Gruiz is a member of the REACH Risk Assessment Committee of the European Chemicals Agency. She is a full time associate professor at Budapest University of Technology and Economics and heads the research group of Environmental Microbiology and Biotechnology. Tamás Meggyes is Research Coordinator in Berlin, Germany.
    He is specialising in research and book projects in environmental engineering. His work focuses on fluid mechanics, hydraulic transport of solids, jet devices, landfill engineering, groundwater remediation, tailings facilities and risk-based environmental management. He contributed to and organised several international conferences and national and European integrated research projects in Hungary, Germany, United Kingdom and USA. Tamás Meggyes was Europe editor of the Land Contamination and Reclamation journal in the UK and a reviewer of several environmental journals. He was invited by the EU as an expert evaluator to assess research applications and by Samarco Mining Company, Brazil, as a tailings management expert. In 2007, he was named Visiting Professor of Built Environment Sustainability at the University of Wolverhampton, UK. He has published 130 papers including eleven books and holds a doctor’s title in fluid mechanics and a Ph.D. degree in landfill engineering from Miskolc University, Hungary. Éva Fenyvesi is senior scientist and founding member of CycloLab Cyclodextrin Research and Development Ltd, Budapest, Hungary.
    She graduated as a chemist and received her PhD in chemical technology at Eotvos University of Natural Sciences, Budapest. She is experienced in the preparation and application of cyclodextrin polymers, in environmental application of cyclodextrins and in gas chromatography. She participated in several national and international research projects, in the development of various environmental technologies applying cyclodextrins. She is author or co-author of over 50 scientific papers, 3 chapters in monographs, over 50 conference presentations and 14 patents. She is an editor of the Cyclodextrin News, the monthly periodical on cyclodextrins.