1st Edition

Explanatory Model Analysis
Explore, Explain, and Examine Predictive Models



  • Available for pre-order. Item will ship after January 22, 2021
ISBN 9780367135591
January 22, 2021 Forthcoming by Chapman and Hall/CRC
310 Pages

USD $99.95

Prices & shipping based on shipping country


Preview

Book Description

Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Table of Contents

1. Introduction.

2. Prediction Understanding.

3. Model Understanding.

4. Model Fidelity.

5. Other Topics.

...
View More

Author(s)

Biography

Przemyslaw Biecek Tomasz Burzykowski

Reviews

"The structure is well-conceived, with chapters consisting in five sections: intuition, method, example, pros and cons, and code snippets. I sense a teacher’s long experience behind these choices.

The chapters contain good mathematical detail on the techniques discussed, but the theory is well balanced with examples and code.

The visualizations are great. Often, the gist of a particular technique, and it’s practical, interpretive value, can be gleaned from the visualizations threading through the chapter, along with captions. The authors did a really nice job with this.

The rationale for the book is well-described.

The discussion of techniques seems both comprehensive (given my sense of the field) and helpfully specific, both at the instance and the dataset levels." (Jeff Webb, University of Utah)

"The authors are doing a very good job in addressing the potential readers, by providing a clean presentation and practical guidance on diagnostic graphical tools…Having an ‘intuition section’ at the beginning of each chapter is very useful." (Riccardo De Bin, University of Oslo)

"The book provides a unified presentation of model exploration, visualization, comparison and diagnostics of different machine learning algorithms…This book would be found useful by both students as well as practitioners who analyze their own data. Books including real data examples in R and in Python are needed in this area. (It) will serve as a reference, especially for analyses done with dalex or archivist R package (and )can serve as a textbook of data science courses in many fields including computer science, social sciences, economics and other." (Patricia Martinkova, Institute of Computer Science of the Czech Academy of Sciences)

"There are books that focus on prediction models, for example the element of statistical learning and an introduction to statistical learning but these are not focused on the evaluation of predictive models which is the main focus on the proposed book and its main advantage. As predictive models become very popular in the last years, such a book that focus on the evaluation of the models and model diagnostics can be very popular." (Ziv Shkedy, Data Science Institute, Hasselt University, Belgium)