1st Edition

Federated Learning Principles, Paradigms, and Applications

Edited By Jayakrushna Sahoo, Mariya Ouaissa, Akarsh K. Nair Copyright 2025
    352 Pages 7 Color & 72 B/W Illustrations
    by Apple Academic Press

    This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data.

    The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well.

    The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems.

    The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included.

    This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.

    1. The Evolution of Machine Learning: From Centralized to Distributed

    Jayakrushna Sahoo, Akarsh K. Nair, and Richa Sharma

    2. Types of Federated Learning and Aggregation Techniques

    S. Shailesh and Joseph James

    3. Federated Learning for IoT/Edge/Fog Computing Systems

    Balqees Talal Hasan and Ali Kadhum Idrees

    4. Adopting Federated Learning for Software-Defined Networks

    Akarsh K. Nair, Jayakrushna Sahoo, and Gaurav Jaswal

    5. Federated Learning in the Internet of Medical Things

    S. Sabapathi, N. Vijayalaskhmi, and S. Sindhu

    6. Federated Learning Approaches for Intrusion Detection Systems: An Overview

    Akarsh K. Nair, Jayakrushna Sahoo, and Gaurav Jaswal

    7. Exploring Communication Efficient Strategies in Federated Learning Systems

    Akarsh K. Nair, Jayakrushna Sahoo, and Ebin Deni Raj

    8. Federated Learning and Privacy, Challenges, Threat and Attack Models, and Analysis

    Sheema Madhusudhanan, Arun Cyril Jose, and Reza Malekian

    9. Analyzing Federated Learning from a Security Perspective

    Akarsh K. Nair, Jayakrushna Sahoo, and Ebin Deni Raj

    10. Blockchain Integrated Federated Learning in Edge/Fog/Cloud Systems for IoT-Based Healthcare Applications: A Survey

    Shinu M. Rajagopal, M. Supriya, and Rajkumar Buyya

    11. Incentive Mechanism for Federated Learning

    Lekha C. Warrier, G. K. Ragesh, and Pao-Ann Hsiung

    12. Protected Shot-Based Federated Learning for Facial Expression Recognition

    A. Sherly Alphonse Rao and J. V. Bibal Benifa


    Jayakrushna Sahoo, PhD, is associated with the Indian Institute of Information Technology, Kottayam, where he serves as the Head of Computer Science and Engineering department. Before this, he worked with BML Munjal University, Gurgaon, India, as an Assistant Professor in the Department of Computer Science and Engineering. Dr. Sahoo has also worked as an ad hoc faculty at the National Institute of Technology, Jamshedpur, India. His publications have appeared in many reputed journals over the years. His research interests include data mining, machine learning, and federated learning. With his vast experience in research, he has been guiding several PhD scholars and has been associated with some of the country‚Äôs premier institutions. He has also worked in the capacity of resource person and technical panel member and has headed several international conferences in India.

    Mariya Ouaissa, PhD, is a Professor in cybersecurity and networks as well as a research associate and practitioner with industry experience as a networks and telecoms engineer. She is a Co-Founder and IT Consultant at the IT Support and Consulting Center. She was formerly affiliated with the School of Technology of Meknes, Morocco. She is an expert reviewer with the Academic Exchange Information Centre (AEIC) and a brand ambassador with Bentham Science. She serves on technical programs and organizing committees of conferences, symposiums, and workshops in her field and is also a reviewer for numerous international journals. Dr. Ouaissa has published book chapters and research papers in international journals, and conferences and has edited several books and has guest editied several special journal issues.  

    Akarsh K. Nair is a Doctoral Researcher at the Indian Institute of Information Technology, Kottayam, India, with a specialization in distributed learning, machine learning, federated learning, and edge intelligence. Mr. Nair has worked as an Assistant Professor in the Department of Computer Science at TEC College, Palakkad, India. He is also associated with iHub HCI Foundation of IIT, Himachal Pradesh, India, as a doctoral fellow. He has published several research articles in reputed scientific journals and international platforms. He has also acted as a reviewer for many prestigious scientific journals.