1st Edition

Granular Computing Analysis and Design of Intelligent Systems

By Witold Pedrycz Copyright 2013
    309 Pages 154 B/W Illustrations
    by CRC Press

    309 Pages 154 B/W Illustrations
    by CRC Press

    Continue Shopping

    Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algorithmic framework and design practices.

    • Introduces the concepts of information granules, information granularity, and granular computing
    • Presents the key formalisms of information granules
    • Builds on the concepts of information granules with discussion of higher-order and higher-type information granules
    • Discusses the operational concept of information granulation and degranulation by highlighting the essence of this tandem and its quantification in terms of the associated reconstruction error
    • Examines the principle of justifiable granularity
    • Stresses the need to look at information granularity as an important design asset that helps construct more realistic models of real-world systems or facilitate collaborative pursuits of system modeling
    • Highlights the concepts, architectures, and design algorithms of granular models
    • Explores application domains where granular computing and granular models play a visible role, including pattern recognition, time series, and decision making

    Written by an internationally renowned authority in the field, this innovative book introduces readers to granular computing as a new paradigm for the analysis and synthesis of intelligent systems. It is a valuable resource for those engaged in research and practical developments in computer, electrical, industrial, manufacturing, and biomedical engineering. Building from fundamentals, the book is also suitable for readers from nontechnical disciplines where information granules assume a visible position.

    Information Granularity, Information Granules, and Granular Computing
    Information Granularity and the Discipline of Granular Computing
    Formal Platforms of Information Granularity
    Information Granularity and Its Quantification
    Information Granules and a Principle of the Least Commitment
    Information Granules of Higher Type and Higher Order
    Hybrid Models of Information Granules
    A Design of Information Granules
    The Granulation–Degranulation Principle
    Information Granularity in Data Representation and Processing
    Optimal Allocation of Information Granularity

    Key Formalisms for Representation of Information Granules and Processing Mechanisms
    Sets and Interval Analysis
    Interval Analysis
    Fuzzy Sets: A Departure from the Principle of Dichotomy
    Rough Sets
    Shadowed Sets as a Three-Valued Logic Characterization of Fuzzy Sets

    Information Granules of Higher Type and Higher Order, and Hybrid Information Granules
    Fuzzy Sets of Higher Order
    Rough Fuzzy Sets and Fuzzy Rough Sets
    Type-2 Fuzzy Sets
    Interval-Valued Fuzzy Sets
    Probabilistic Sets
    Hybrid Models of Information Granules: Probabilistic and Fuzzy Set Information Granules
    Realization of Fuzzy Models with Information Granules of Higher Type and Higher Order

    Representation of Information Granules
    Description of Information Granules by a Certain Vocabulary of Information Granules
    Information Granulation–Degranulation Mechanism in the Presence of Numeric Data
    Granulation–Degranulation in the Presence of Triangular Fuzzy Sets

    The Design of Information Granules
    The Principle of Justifiable Granularity
    Construction of Information Granules through Clustering of Numeric Experimental Evidence
    Knowledge-Based Clustering: Bringing Together Data and Knowledge
    Refinement of Information Granules through Successive Clustering
    Collaborative Clustering and Higher-Level Information Granules

    Optimal Allocation of Information Granularity: Building Granular Mappings
    From Mappings and Models to Granular Mappings and Granular Models
    Granular Mappings
    Protocols of Allocation of Information Granularity
    Design Criteria Guiding the Realization of the Protocols for Allocation of Information Granularity
    Granular Neural Networks as Examples of Granular Nonlinear Mappings
    Further Problems of Optimal Allocation of Information Granularity

    Granular Description of Data and Pattern Classification
    Granular Description of Data—A Shadowed Sets Approach
    Building Granular Representatives of Data
    A Construction of Granular Prototypes with the Use of the Granulation–Degranulation Mechanism
    Information Granularity as a Design Asset and Its Optimal Allocation
    Design Considerations
    Pattern Classification with Information Granules
    Granular Classification Schemes

    Granular Models: Architectures and Development
    The Mechanisms of Collaboration and Associated Architectures
    Realization of Granular Models in a Hierarchical Modeling Topology
    The Detailed Considerations: From Fuzzy Rule-Based Models to Granular Fuzzy Models
    A Single-Level Knowledge Reconciliation: Mechanisms of Collaboration
    Collaboration Scheme: Information Granules as Sources of Knowledge and a Development of Information Granules of a Higher Type
    Structure-Free Granular Models
    The Essence of Mappings between Input and Output Information Granules and the Underlying Processing
    The Design of Information Granules in the Output Space and the Realization of the Aggregation Process
    The Development of the Output Information Granules with the Use of the Principle of Justifiable Granularity
    Interpretation of Granular Mappings
    Illustrative Examples

    Granular Time Series
    Introductory Notes
    Information Granules and Time Series
    A Granular Framework of Interpretation of Time Series: A Layered Approach to the Interpretation of Time Series
    A Classification Framework of Granular Time Series
    Granular Classifiers

    From Models to Granular Models
    Knowledge Transfer in System Modeling
    Fuzzy Logic Networks—Architectural Considerations
    Granular Logic Descriptors
    Granular Neural Networks
    The Design of Granular Fuzzy Takagi–Sugeno Rule-Based Models: An Optimal Allocation of Information Granularity

    Collaborative and Linguistic Models of Decision Making
    Analytic Hierarchy Process (AHP) Method and Its Granular Generalization
    Analytic Hierarchy Process Model—The Concept
    Granular Reciprocal Matrices
    A Quantification (Granulation) of Linguistic Terms as Their Operational Realization
    Granular Logic Operators
    Modes of Processing with Granular Characterization of Fuzzy Sets


    Chapters include Conclusions and References.


    Witold Pedrycz, Ph.D., is Professor and Canada Research Chair (CRC) in Computational Intelligence in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. He is also with the Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland and King Abdulaziz University, Saudi Arabia. In 2009, Dr. Pedrycz was elected a foreign member of the Polish Academy of Sciences. He is a Fellow of the Royal Society of Canada, the Institute of Electronic and Electrical Engineers (IEEE), International Fuzzy Systems Association (IFSA), International Society of Management Engineers, Engineers Canada, and The Engineering Institute of Canada. He is editor-in-chief of Information Sciences and editor-in-chief of IEEE Transactions on Systems, Man, and Cybernetics, Part A. He currently serves as an associate editor of IEEE Transactions on Fuzzy Systems and a number of other international journals. In 2007, he received the prestigious Norbert Wiener award from the IEEE Systems, Man, and Cybernetics Society. Dr. Pedrycz is a recipient of the IEEE Canada Computer Engineering Medal. In 2009, he received a Cajastur Prize for Soft Computing from the European Centre for Soft Computing for "pioneering and multifaceted contributions to granular computing." In 2013 he received a prestigious Killam Prize.

    "Dr. Pedrycz is an internationally acclaimed authority in the granular computing area. ... I particularly appreciate his elegant writing style. This book is the first comprehensive treatise of the granular computing techniques and their application to the design of intelligent systems. ... As an application-oriented practitioner in computational intelligence systems, I think that this book will be a welcome and strongly needed addition to this field. I cannot think of any other expert worldwide more qualified than Prof. Pedycz to write such a book."
    —Emil M. Petriu, University of Ottawa, Canada

    "This volume covers most of the interesting and important topics in granular computing. The contents may be well understood by senior or master course students in the field of computer science ... also a good textbook for engineers who are involved in developing so-called intelligent systems."
    —Kaoru Hirota, Tokyo Institute of Technology, Japan

    "Dr. Pedrycz’s latest magnum opus ... breaks new ground in many directions. [It] takes an important step toward achievement of human-level machine intelligence—a principal goal of artificial intelligence (AI) since its inception. ... [This is] a remarkably well put together and reader-friendly collection of concepts and techniques, which constitute granular computing. ... [The book] combines extraordinary breadth with extraordinary depth. It contains a wealth of new ideas, and unfolds a vast panorama of concepts, methods, and applications. ... Dr. Pedrycz’s development and description of these concepts, techniques, and their applications is a truly remarkable achievement. ... must reading for all who are concerned with the design and application of intelligent systems."
    —From the Foreword by Lotfi A. Zadeh, University of California, Berkeley, USA