Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, Second Edition, 2nd Edition (Hardback) book cover

Heteroepitaxy of Semiconductors

Theory, Growth, and Characterization, Second Edition, 2nd Edition

By John E. Ayers, Tedi Kujofsa, Paul Rago, Johanna Raphael

CRC Press

643 pages | 22 Color Illus. | 330 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781482254358
pub: 2016-10-18
SAVE ~$57.00
$285.00
$228.00
x
eBook (VitalSource) : 9781315372440
pub: 2016-10-03
from $28.98


FREE Standard Shipping!

Description

In the past ten years, heteroepitaxy has continued to increase in importance with the explosive growth of the electronics industry and the development of a myriad of heteroepitaxial devices for solid state lighting, green energy, displays, communications, and digital computing. Our ever-growing understanding of the basic physics and chemistry underlying heteroepitaxy, especially lattice relaxation and dislocation dynamic, has enabled an ever-increasing emphasis on metamorphic devices. To reflect this focus, two all-new chapters have been included in this new edition. One chapter addresses metamorphic buffer layers, and the other covers metamorphic devices. The remaining seven chapters have been revised extensively with new material on crystal symmetry and relationships, III-nitride materials, lattice relaxation physics and models, in-situ characterization, and reciprocal space maps.

Reviews

"Concise, didactic and has wide coverage. The book covers the most important aspects of the heteroepitaxy of semiconductors from basics to applications, including characterization techniques. The book is not only an excellent introduction to the diverse field of semiconductor heteroepitaxy, but provides solid background for further, more specialized studies."

— Ferenc Riesz, Centre for Energy Research, Hungarian Academy of Sciences, Hungary

Table of Contents

Preface to the Second Edition……………………………………………………………………………………….. xiii

Preface to the First Edition………………………………………………………………………………………………xv

1. Introduction………………………………………………………………………………………………………………1

References………………………………………………………………………………………………………………….4

2. Properties of Semiconductors…………………………………………………………………………………..7

2.1 Introduction……………………………………………………………………………………………………..7

2.2 Crystallographic Properties……………………………………………………………………………..7

2.2.1 Diamond Structure…………………………………………………………………………….. 12

2.2.2 Zinc Blende Structure…………………………………………………………………………. 12

2.2.3 Wurtzite Structure……………………………………………………………………………… 13

2.2.4 Silicon Carbide…………………………………………………………………………………… 14

2.2.5 Miller Indices in Cubic Crystals…………………………………………………………. 15

2.2.6 Miller–Bravais Indices in Hexagonal Crystals……………………………………. 16

2.2.7 Computations and the Metric Tensor…………………………………………………. 17

2.2.7.1 Coordinate Transformation………………………………………………….. 18

2.2.7.2 The Metric Tensor…………………………………………………………………20

2.2.7.3 Distances between Lattice Points and Lengths of Vectors…….. 21

2.2.7.4 Angle between Vector Directions………………………………………….23

2.2.7.5 Volume of a Unit Cell……………………………………………………………. 24

2.2.7.6 Reciprocal Basis Vectors and Reciprocal Metric Tensor………… 24

2.2.7.7 Distances and Angles Involving Planes………………………………..26

2.2.8 Orientation Effects………………………………………………………………………………29

2.2.8.1 Diamond Semiconductors……………………………………………………..29

2.2.8.2 Zinc Blende Semiconductors…………………………………………………29

2.2.8.3 Wurtzite Semiconductors………………………………………………………30

2.2.8.4 Hexagonal Silicon Carbide……………………………………………………. 32

2.3 Lattice Constants and Thermal Expansion Coefficients…………………………………. 32

2.4 Elastic Properties……………………………………………………………………………………………. 37

2.4.1 Infinitesimal Strain Theory………………………………………………………………… 37

2.4.2 Hooke’s Law………………………………………………………………………………………. 41

2.4.2.1 Hooke’s Law for Isotropic Materials……………………………………..43

2.4.2.2 Hooke’s Law for Cubic Crystals…………………………………………….43

2.4.2.3 Hooke’s Law for Hexagonal Crystals…………………………………….46

2.4.3 Elastic Moduli……………………………………………………………………………………..46

2.4.3.1 Elastic Moduli for Cubic Crystals………………………………………….48

2.4.3.2 Elastic Moduli for Hexagonal Crystals………………………………….49

2.4.4 Biaxial Stresses and Tetragonal Distortion in Cubic Crystals………………50

2.4.5 Biaxial Stresses in Hexagonal Crystals……………………………………………….. 52

2.4.6 Strain Energy in Cubic Crystals…………………………………………………………. 52

2.4.7 Strain Energy in Nitride Semiconductors……………………………………………53

2.5 Surface Free Energy………………………………………………………………………………………..53

2.6 Dislocations……………………………………………………………………………………………………. 57

2.6.1 Screw Dislocations………………………………………………………………………………58

2.6.2 Edge Dislocations………………………………………………………………………………..58

2.6.3 Slip Systems……………………………………………………………………………………….. 59

2.6.4 Dislocations in Diamond and Zinc Blende Crystals……………………………. 61

2.6.4.1 Threading Dislocations in Diamond and Zinc Blende

Crystals…………………………………………………………………………………63

2.6.4.2 Misfit Dislocations in Diamond and Zinc Blende Crystals…….64

2.6.5 Dislocations in Wurtzite Crystals……………………………………………………….. 67

2.6.5.1 Threading Dislocations in Wurtzite Crystals……………………….. 67

2.6.5.2 Misfit Dislocations in III-Nitrides…………………………………………. 69

2.6.6 Dislocations in Hexagonal SiC……………………………………………………………. 69

2.6.6.1 Threading Dislocations in Hexagonal SiC……………………………. 70

2.6.7 Strain Fields and Line Energies of Dislocations………………………………….. 70

2.6.7.1 Energy of the Screw Dislocation…………………………………………… 70

2.6.7.2 Energy of the Edge Dislocation……………………………………………..72

2.6.7.3 Energy of Mixed Dislocations……………………………………………….73

2.6.7.4 Frank’s Rule for Dislocation Energies…………………………………… 74

2.6.7.5 Line Energies of Dislocations in Nitride Semiconductors…….. 74

2.6.7.6 Hollow-Core Dislocations (Micropipes)………………………………..75

2.6.8 Forces on Dislocations………………………………………………………………………… 76

2.6.9 Dislocation Motion……………………………………………………………………………..77

2.6.10 Electronic Properties of Dislocations…………………………………………………..80

2.6.10.1 Diamond and Zinc Blende Semiconductors…………………………..80

2.7 Planar Defects…………………………………………………………………………………………………83

2.7.1 Stacking Faults……………………………………………………………………………………83

2.7.2 Twins………………………………………………………………………………………………….85

2.7.3 Inversion Domain Boundaries…………………………………………………………….86

2.8 Electronic Properties of Semiconductors…………………………………………………………88

References………………………………………………………………………………………………………………..89

3. Heteroepitaxial Growth……………………………………………………………………………………….. 101

3.1 Introduction…………………………………………………………………………………………………. 101

3.2 Vapor Phase Epitaxy…………………………………………………………………………………….. 102

3.2.1 Vapor Phase Epitaxial Mechanisms and Growth Rates…………………….. 102

3.2.2 Hydrodynamic Considerations………………………………………………………… 104

3.2.3 Vapor Phase Epitaxial Reactors………………………………………………………… 106

3.2.4 Metalorganic Vapor Phase Epitaxy…………………………………………………… 109

3.3 Molecular Beam Epitaxy………………………………………………………………………………. 112

3.4 Silicon, Germanium, and Si1−xGex Alloys……………………………………………………… 115

3.5 Silicon Carbide……………………………………………………………………………………………… 117

3.6 III-Arsenides, III-Phosphides, and III-Antimonides……………………………………… 118

3.7 III-Nitrides……………………………………………………………………………………………………. 119

3.7.1 Vapor Phase Epitaxial Growth of III-Nitrides…………………………………… 120

3.7.2 Molecular Beam Epitaxy of III-Nitrides…………………………………………….122

3.8 II-VI Semiconductors……………………………………………………………………………………. 123

3.8.1 ZnSe and Its Alloys…………………………………………………………………………… 124

3.8.2 HgCdTe…………………………………………………………………………………………….. 124

3.8.3 ZnO………………………………………………………………………………………………….. 125

3.9 Conclusion……………………………………………………………………………………………………. 126

References……………………………………………………………………………………………………………… 126

4. Surface and Chemical Considerations in Heteroepitaxy…………………………………….. 131

4.1 Introduction…………………………………………………………………………………………………. 131

4.2 Surface Reconstructions……………………………………………………………………………….. 132

4.2.1 Wood’s Notation for Reconstructed Surfaces……………………………………. 134

4.2.2 Experimental Observations………………………………………………………………. 135

4.2.2.1 Si(001) Surface…………………………………………………………………….. 135

4.2.2.2 Si(111) Surface……………………………………………………………………… 136

4.2.2.3 Ge(111) Surface……………………………………………………………………. 136

4.2.2.4 6H-SiC(0001) Surface…………………………………………………………… 136

4.2.2.5 3C-SiC(001)………………………………………………………………………….. 137

4.2.2.6 3C-SiC(111)………………………………………………………………………….. 137

4.2.2.7 GaN(0001)…………………………………………………………………………… 138

4.2.2.8 Zinc Blende GaN(001)…………………………………………………………. 138

4.2.2.9 GaAs(001)……………………………………………………………………………. 138

4.2.2.10 InP(001)………………………………………………………………………………. 138

4.2.2.11 Sapphire(0001)…………………………………………………………………….. 139

4.2.3 Surface Reconstruction and Heteroepitaxy………………………………………. 139

4.2.3.1 Inversion Domain Boundaries……………………………………………. 139

4.2.3.2 Heteroepitaxy of Polar Semiconductors with Different

Ionicities……………………………………………………………………………… 141

4.3 Nucleation……………………………………………………………………………………………………. 142

4.3.1 Homogeneous Nucleation………………………………………………………………… 142

4.3.2 Heterogeneous Nucleation……………………………………………………………….. 144

4.3.2.1 Macroscopic Model for Heterogeneous Nucleation…………….. 145

4.3.2.2 Atomistic Model…………………………………………………………………. 146

4.3.2.3 Vicinal Substrates and Step-Flow Growth………………………….. 149

4.4 Growth Modes……………………………………………………………………………………………… 149

4.4.1 Growth Modes in Equilibrium…………………………………………………………. 151

4.4.1.1 Regime I (f < ε1)…………………………………………………………………… 154

4.4.1.2 Regime II (ε1 < f < ε2)…………………………………………………………… 154

4.4.1.3 Regime III (ε2 < f < ε3)………………………………………………………….. 154

4.4.1.4 Regime IV (f > ε3)………………………………………………………………… 155

4.4.1.5 Equilibrium Growth Modes in SiGe/Si………………………………. 155

4.4.2 Growth Modes and Kinetic Considerations……………………………………… 155

4.5 Low-Temperature Nucleation Layers……………………………………………………………. 161

4.5.1 Three-Dimensional Growth……………………………………………………………… 161

4.5.2 Surface Roughening…………………………………………………………………………. 162

4.5.3 Lattice Relaxation……………………………………………………………………………… 163

4.5.4 Threading Dislocations…………………………………………………………………….. 163

4.6 Surfactants in Heteroepitaxy………………………………………………………………………… 163

4.6.1 Surfactants and Growth Mode…………………………………………………………. 163

4.6.2 Surfactants and Island Shape……………………………………………………………. 165

4.6.3 Surfactants and Misfit Dislocations………………………………………………….. 165

4.6.4 Surfactants and Ordering in InGaP………………………………………………….. 166

4.7 Quantum Dots and Self-Assembly……………………………………………………………….. 166

4.7.1 Topographically Guided Assembly of Quantum Dots……………………… 166

4.7.2 Stressor-Guided Assembly of Quantum Dots…………………………………… 169

4.7.3 Vertical Organization of Quantum Dots…………………………………………… 170

4.7.4 Precision Lateral Placement of Quantum Dots…………………………………. 170

References……………………………………………………………………………………………………………… 172

5. Mismatched Heteroepitaxial Growth and Strain Relaxation: I. Uniform Layers…..181

5.1 Introduction…………………………………………………………………………………………………. 181

5.2 Pseudomorphic Growth and the Critical Layer Thickness……………………………. 183

5.2.1 Matthews and Blakeslee Force Balance Model………………………………….. 184

5.2.2 Matthews Energy Calculation………………………………………………………….. 186

5.2.3 van der Merwe Model………………………………………………………………………. 190

5.2.4 People and Bean Model…………………………………………………………………….. 191

5.2.5 Effect of the Sign of Mismatch………………………………………………………….. 192

5.2.6 Critical Layer Thickness in Islands…………………………………………………… 194

5.2.7 Critical Layer Thickness in Nitride Semiconductors…………………………. 196

5.3 Dislocation Sources………………………………………………………………………………………. 201

5.3.1 Homogeneous Nucleation of Dislocations………………………………………… 201

5.3.2 Heterogeneous Nucleation of Dislocations………………………………………..203

5.3.3 Dislocation Multiplication…………………………………………………………………204

5.3.3.1 Frank–Read Source……………………………………………………………..205

5.3.3.2 Spiral Source……………………………………………………………………….208

5.3.3.3 Hagen–Strunk Multiplication…………………………………………….. 211

5.4 Interactions between Misfit Dislocations……………………………………………………… 212

5.5 Lattice Relaxation Mechanisms……………………………………………………………………. 214

5.5.1 Bending of Substrate Dislocations…………………………………………………….. 214

5.5.2 Glide of Half Loops………………………………………………………………………….. 216

5.5.3 Injection of Edge Dislocations at Island Boundaries…………………………. 218

5.5.4 Nucleation of Shockley Partial Dislocations……………………………………… 219

5.5.5 Cracking…………………………………………………………………………………………… 221

5.5.6 Interfacial Misfit Dislocation Growth Mode……………………………………… 221

5.6 Quantitative Models for Lattice Relaxation…………………………………………………..225

5.6.1 Matthews and Blakeslee Equilibrium Model…………………………………….226

5.6.2 Kinetic Models for Relaxation……………………………………………………………227

5.6.3 Dislocation Blocking………………………………………………………………………….229

5.6.4 Surface Roughness and Dislocation Blocking…………………………………… 232

5.6.5 Matthews, Mader, and Light Kinetic Model………………………………………234

5.6.6 Dodson and Tsao Kinetic Model……………………………………………………….235

5.6.7 Hull, Bean, and Buescher Kinetic Model………………………………………….. 237

5.6.8 Kujofsa et al. Kinetic Model………………………………………………………………. 241

5.6.9 Kinetically Limited Lattice Relaxation in Zinc Blende

Semiconductors………………………………………………………………………………… 242

5.6.9.1 Lattice Mismatch and Thickness Dependence of

Kinetically Limited In-Plane Strain…………………………………….. 243

5.6.9.2 Temperature-Graded Heterostructures………………………………. 243

5.6.9.3 Lattice Relaxation in the InGaAs/GaAs Material System……. 244

5.6.10 Kinetically Limited Relaxation in Nitride Semiconductors………………. 252

5.7 Lattice Relaxation on Vicinal Substrates: Crystallographic Tilting of

Heteroepitaxial Layers………………………………………………………………………………….254

5.7.1 Nagai Model……………………………………………………………………………………..254

5.7.2 Olsen and Smith Model…………………………………………………………………….255

5.7.3 Ayers, Ghandhi, and Schowalter Model…………………………………………….256

5.7.4 Riesz Model………………………………………………………………………………………263

5.7.5 Vicinal Epitaxy of III-Nitride Semiconductors………………………………….. 266

5.7.6 Vicinal Heteroepitaxy with a Change in Stacking Sequence……………..268

5.7.7 Vicinal Heteroepitaxy with Multilayer Steps……………………………………. 269

5.8 Dislocation Coalescence, Annihilation, and Removal in Relaxed

Heteroepitaxial Layers…………………………………………………………………………………. 271

5.8.1 Thermal Strain…………………………………………………………………………………. 275

5.8.2 Cracking in Thick Films……………………………………………………………………277

References………………………………………………………………………………………………………………280

6. Mismatched Heteroepitaxial Growth and Strain Relaxation: II. Graded

Layers and Multilayered Structures…………………………………………………………………….. 289

6.1 Introduction…………………………………………………………………………………………………. 289

6.2 Critical Layer Thickness: General Case………………………………………………………… 289

6.3 Equilibrium Strain and Misfit Dislocations: General Case……………………………. 292

6.4 Kinetically Limited Strain Relaxation: General Case……………………………………. 294

6.5 Threading Dislocation Densities: General Case……………………………………………. 297

6.6 Step-Graded Layer………………………………………………………………………………………..299

6.6.1 Lattice Relaxation and Residual Strain in a Step-Graded Layer…………300

6.6.2 Misfit and Threading Dislocations in a Step-Graded Layer……………….303

6.6.3 Morphology and Surface Roughening in a Step-Graded Layer…………306

6.6.4 Crystallographic Tilting in a Step-Graded Layer……………………………….308

6.7 Linearly Graded Layer………………………………………………………………………………….308

6.7.1 Approaches to Linear Grading………………………………………………………….308

6.7.2 Critical Thickness in a Linearly Graded Layer…………………………………..309

6.7.3 Critical Layer Thicknesses in Linearly Graded Layers with

Nonzero Interfacial Mismatch………………………………………………………….. 311

6.7.4 Misfit Dislocations and Strain in a Linearly Graded Layer……………….. 317

6.7.5 Threading Dislocations in a Linearly Graded Layer…………………………. 323

6.7.6 Crystallographic Tilting in a Linearly Graded Layer…………………………330

6.7.7 Surface Roughening and Cross-Hatch in a Linearly Graded Layer……333

6.7.8 Dual-Slope and Tandem Graded Layers……………………………………………333

6.8 Sublinearly and Superlinearly Graded Layers……………………………………………….335

6.8.1 Critical Layer Thickness in Sublinear Exponentially Graded Layers….. 336

6.8.2 Strain Relaxation in Sublinearly Graded Layers………………………………..342

6.8.3 Comparison of Sublinearly and Superlinearly Graded Layers…………..342

6.9 S-Graded Layer……………………………………………………………………………………………..346

6.9.1 Misfit Dislocations and Strain in the S-Graded Layer………………………..346

6.9.2 Refined Model for S-Graded Layers…………………………………………………..354

6.9.3 Threading Dislocations in S-Graded Layers………………………………………355

6.10 Strained Layer Superlattices…………………………………………………………………………. 357

6.11 Conclusion…………………………………………………………………………………………………….358

References……………………………………………………………………………………………………………… 359

7. Characterization of Heteroepitaxial Layers…………………………………………………………. 367

7.1 Introduction…………………………………………………………………………………………………. 367

7.2 X-Ray Diffraction………………………………………………………………………………………….368

7.2.1 Positions of Diffracted Beams…………………………………………………………… 369

7.2.1.1 Bragg Equation…………………………………………………………………… 369

7.2.1.2 Reciprocal Lattice and the von Laue Formulation for

Diffraction………………………………………………………………………….. 370

7.2.1.3 Ewald Sphere……………………………………………………………………… 372

7.2.2 Intensities of Diffracted Beams…………………………………………………………. 372

7.2.2.1 Scattering of X-Rays by a Single Electron……………………………. 373

7.2.2.2 Scattering of X-Rays by an Atom………………………………………… 374

7.2.2.3 Scattering of X-Rays by a Unit Cell……………………………………… 375

7.2.2.4 Intensities of Diffraction Profiles………………………………………… 377

7.2.3 Dynamical Diffraction Theory…………………………………………………………. 377

7.2.3.1 Intrinsic Diffraction Profiles for Perfect Crystals………………… 378

7.2.3.2 Intrinsic Widths of Diffraction Profiles………………………………..380

7.2.3.3 Extinction Depth and Absorption Depth……………………………. 381

7.2.4 X-Ray Diffractometers………………………………………………………………………. 382

7.2.4.1 Double-Crystal Diffractometer……………………………………………383

7.2.4.2 Bartels Double-Axis Diffractometer…………………………………….386

7.2.4.3 Triple-Axis Diffractometer………………………………………………….. 387

7.2.5 Resolution of X-Ray Diffraction Measurements and the Effect of

Finite Counting Statistics………………………………………………………………….. 387

7.2.6 Reciprocal Space Maps……………………………………………………………………… 389

7.3 Electron Diffraction……………………………………………………………………………………… 392

7.3.1 Reflection High-Energy Electron Diffraction……………………………………. 392

7.3.2 Low-Energy Electron Diffraction……………………………………………………… 394

7.4 Microscopy…………………………………………………………………………………………………… 395

7.4.1 Optical Microscopy………………………………………………………………………….. 395

7.4.2 Transmission Electron Microscopy…………………………………………………… 396

7.4.3 Scanning Tunneling Microscopy………………………………………………………. 398

7.4.4 Atomic Force Microscopy………………………………………………………………….400

7.5 Crystallographic Etching Techniques……………………………………………………………400

7.6 Photoluminescence……………………………………………………………………………………….402

7.7 Growth Rate and Layer Thickness………………………………………………………………..405

7.8 Determination of Composition and Strain…………………………………………………….408

7.8.1 X-Ray Diffraction Analysis of a Binary Heteroepitaxial Layer…………..408

7.8.2 X-Ray Diffraction Analysis of a Ternary Heteroepitaxial Layer………… 410

7.8.3 X-Ray Analysis of a Quaternary Heteroepitaxial Layer……………………. 414

7.8.4 Analysis of Composition and Strain Using X-Ray Reciprocal

Space Maps………………………………………………………………………………………. 414

7.8.4.1 Application of RSM to a Uniform Buffer Layer…………………… 414

7.8.4.2 Application of RSM to Linearly Graded and

Step-Graded Buffers…………………………………………………………… 417

7.8.4.3 Application of Reciprocal Space Maps to III-Nitride

Materials…………………………………………………………………………….. 418

7.8.5 In Situ Stress–Strain Measurements Using Multibeam Optical

Stress Sensor…………………………………………………………………………………….. 419

7.9 Determination of the Critical Layer Thickness…………………………………………….. 424

7.9.1 Effect of Finite Resolution on CLT Determination……………………………..425

7.9.2 X-Ray Diffraction Determination of the CLT……………………………………..427

7.9.2.1 X-Ray Strain Method for CLT Determination………………………428

7.9.2.2 X-Ray FWHM Method for CLT Determination…………………… 432

7.9.2.3 X-Ray Topography Determination of CLT…………………………… 437

7.9.2.4 TEM Determination of the CLT…………………………………………..438

7.9.2.5 Electron Beam–Induced Current Determination of CLT…….. 439

7.9.2.6 Photoluminescence Determination of the CLT……………………. 439

7.9.2.7 PLM Determination of the CLT…………………………………………… 441

7.9.2.8 RHEED Determination of the CLT………………………………………442

7.9.2.9 Scanning Tunneling Microscope Determination of

the CLT………………………………………………………………………….. 444

7.9.2.10 Rutherford Backscattering Determination of the CLT…………445

7.10 Determination of the Crystal Orientation……………………………………………………..447

7.11 Characterization of Defect Types and Densities……………………………………………449

7.11.1 Characterizing Defects by TEM…………………………………………………………450

7.11.2 Characterizing Defects by Crystallographic Etching………………………… 451

7.11.3 Characterizing Defects by X-Ray Diffraction…………………………………….453

7.11.4 Characterization of Asymmetric Dislocation Densities…………………….. 459

7.11.5 Diffuse Scattering Characterization of Defects………………………………….463

7.11.5.1 Application of X-Ray Reciprocal Space Maps to

Characterize Defects in IMF-Grown Materials……………………463

7.12 Dynamical X-Ray Diffraction Analysis of Multilayered Device Structures

and Superlattices…………………………………………………………………………………………..465

7.12.1 Dynamical X-Ray Diffraction Analysis of Device

Heterostructures Containing Dislocations……………………………………….. 469

7.12.1.1 Phase-Invariant Model……………………………………………………….. 470

7.12.1.2 Dynamical Modeling of Asymmetrical Dislocation

Densities……………………………………………………………………………..480

7.12.1.3 Mosaic Crystal Model………………………………………………………….484

7.13 Characterization of the Growth Mode…………………………………………………………..490

References……………………………………………………………………………………………………………… 494

8. Defect Engineering in Heteroepitaxial Material………………………………………………….503

8.1 Introduction………………………………………………………………………………………………….503

8.2 Buffer Layer Approaches and Virtual Substrates………………………………………….503

8.2.1 Dislocation Compensation………………………………………………………………..504

8.2.2 Temperature-Graded Layers……………………………………………………………..507

8.2.3 Superlattice Buffer Layers………………………………………………………………….507

8.3 Reduced Area Growth Using Patterned Substrates………………………………………. 513

8.4 Patterning and Annealing……………………………………………………………………………. 516

8.5 Defect Reduction by Selective Evaporation…………………………………………………… 521

8.6 Epitaxial Lateral Overgrowth………………………………………………………………………. 523

8.7 Pendeo-Epitaxy…………………………………………………………………………………………….. 529

8.8 Nanoheteroepitaxy………………………………………………………………………………………. 529

8.8.1 Nanoheteroepitaxy on a Noncompliant Substrate…………………………….. 532

8.8.2 Nanoheteroepitaxy with a Compliant Substrate………………………………..534

8.9 Planar Compliant Substrates………………………………………………………………………… 537

8.9.1 Compliant Substrate Theory…………………………………………………………….. 539

8.9.2 Compliant Substrate Implementation……………………………………………….. 541

8.9.2.1 Cantilevered Membranes…………………………………………………….543

8.9.2.2 Silicon-on-Insulator as a Compliant Substrate……………………..544

8.9.2.3 Twist-Bonded Compliant Substrates……………………………………548

8.10 Free-Standing Semiconductor Films…………………………………………………………….. 551

8.11 Conclusion……………………………………………………………………………………………………. 552

References………………………………………………………………………………………………………………553

9. Metamorphic Devices…………………………………………………………………………………………… 557

9.1 Introduction…………………………………………………………………………………………………. 557

9.2 Strain-Relaxed Buffer MOSFETs……………………………………………………………………558

9.3 High-Electron-Mobility Transistors………………………………………………………………560

9.3.1 HEMTs with Arsenide Channel Layers…………………………………………….560

9.3.2 HEMTs with Nitride Channel Layers……………………………………………….. 561

9.4 Heterojunction Bipolar Transistors……………………………………………………………….563

9.5 Light-Emitting Diodes…………………………………………………………………………………..564

9.5.1 Red Light-Emitting Diodes……………………………………………………………….566

9.5.2 Amber Light-Emitting Diodes………………………………………………………….. 570

9.5.3 Green Light-Emitting Diodes……………………………………………………………. 571

9.5.4 Blue Light-Emitting Diodes………………………………………………………………. 573

9.5.5 Ultraviolet Light-Emitting Diodes…………………………………………………….. 575

9.5.6 White Light-Emitting Diodes……………………………………………………………. 577

9.6 Solar Cells…………………………………………………………………………………………………….. 579

9.7 Conclusions…………………………………………………………………………………………………..586

References………………………………………………………………………………………………………………586

Appendix I…………………………………………………………………………………………………………………… 593

Appendix II…………………………………………………………………………………………………………………. 595

Appendix III……………………………………………………………………………………………………………….. 597

Appendix IV………………………………………………………………………………………………………………..603

Appendix V………………………………………………………………………………………………………………….609

Appendix VI……………………………………………………………………………………………………………….. 611

Appendix VII………………………………………………………………………………………………………………. 613

Appendix VIII…………………………………………………………………………………………………………….. 617

Index……………………………………………………………………………………………………………………………. 629

About the Authors

J.E. Ayers, T. Kujofsa, P.B. Rago, and J.E. Raphael are all members of the Semiconductor Materials Research Group at the University of Connecticut, Storrs, USA.

Subject Categories

BISAC Subject Codes/Headings:
TEC007000
TECHNOLOGY & ENGINEERING / Electrical
TEC008000
TECHNOLOGY & ENGINEERING / Electronics / General
TEC008010
TECHNOLOGY & ENGINEERING / Electronics / Circuits / General
TEC019000
TECHNOLOGY & ENGINEERING / Lasers & Photonics