1st Edition

Intelligent Image Analysis for Plant Phenotyping

Edited By Ashok Samal, Sruti Das Choudhury Copyright 2021

    Domesticated crops are the result of artificial selection for particular phenotypes or, in some cases, natural selection for an adaptive trait. Plant traits can be identified through image-based plant phenotyping, a process that was, until recently, strenous and time-consuming. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques, using computer vision and imaging technologies. These methodologies provide an automated, non-invasive, and scalable mechanism by which to define and collect plant phenotypes. Beautifully illustrated, with numerous color images, the book focuses on phenotypes measured from individual plants under controlled experimental conditions, which are widely available in high-throughput systems.


    • Presents methodologies for image processing, including data-driven and machine learning techniques for plant phenotyping.
    • Features information on advanced techniques for extracting phenotypes through images and image sequences captured in a variety of modalities.
    • Includes real-world scientific problems, including predicting yield by modeling interactions between plant data and environmental information.
    • Discusses the challenge of translating images into biologically informative quantitative phenotypes.

    A practical resource for students, researchers, and practitioners, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences.

    PART I Basics

    Chapter 1 Image-Based Plant Phenotyping: Opportunities and Challenges

    [Ashok Samal, Sruti Das Choudhury, and Tala Awada]

    Chapter 2 Multisensor Phenotyping for Crop Physiology

    [Stefan Paulus, Gustavo Bonaventure, and Marcus Jansen]

    Chapter 3 Image Processing Techniques for Plant Phenotyping

    [Bashyam Srinidhi and Sanjiv Bhatia]

    PART II Techniques

    Chapter 4 Segmentation Techniques and Challenges in Plant Phenotyping

    [Sruti Das Choudhury]

    Chapter 5 Structural High-Throughput Plant Phenotyping Based on Image

    Sequence Analysis

    [Sruti Das Choudhury and Ashok Samal]

    Chapter 6 Geometry Reconstruction of Plants

    [Ayan Chaudhury and Christophe Godin]

    Chapter 7 Image-Based Structural Phenotyping of Stems and Branches

    [Fumio Okura, Takahiro Isokane, Ayaka Ide, Yasuyuki

    Matsushita, and Yasushi Yagi]

    Chapter 8 Time Series- and Eigenvalue-Based Analysis of Plant Phenotypes

    [Sruti Das Choudhury, Saptarsi Goswami, and Amlan Chakrabarti]

    Chapter 9 Data-Driven Techniques for Plant Phenotyping Using

    Hyperspectral Imagery

    [Suraj Gampa and Rubi Quiñones]

    Chapter 10 Machine Learning and Statistical Approaches for Plant


    [Zheng Xu and Cong Wu]

    Chapter 11 A Brief Introduction to Machine Learning and Deep Learning

    for Computer Vision

    [Eleanor Quint and Stephen Scott]

    PART III Practice

    Chapter 12 Chlorophyll a Fluorescence Analyses to Investigate the Impacts

    of Genotype, Species, and Stress on Photosynthetic Efficiency

    and Plant Productivity

    [Carmela Rosaria Guadagno and Brent E. Ewers]

    Chapter 13 Predicting Yield by Modeling Interactions between Canopy

    Coverage Image Data, Genotypic and Environmental

    Information for Soybeans

    [Diego Jarquin, Reka Howard, Alencar Xavier, and Sruti Das


    Chapter 14 Field Phenotyping for Salt Tolerance and Imaging Techniques

    for Crop Stress Biology

    [Shayani Das Laha, Amlan Jyoti Naskar, Tanmay Sarkar,

    Suman Guha, Hossain Ali Mondal, and Malay Das]

    Chapter 15 The Adoption of Automated Phenotyping by Plant Breeders

    [Lana Awada, Peter W. B. Phillips, and Stuart J. Smyth]


    Ashok Samal is a Professor in the Department of Computer Science and Engineering at the University of Nebraska-Lincoln, USA. He received Bachelor of Technology from the Indian Institute of Technology, Kanpur, India, and Ph.D. from the University of Utah, Salt Lake City, USA.  His research interests include computer vision and data mining, and he has published extensively in these areas. More recently, he has focused on plant phenotyping and co-leads the Plant Vision Initiative research group at the University of Nebraska-Lincoln.

    Sruti Das Choudhury is a Research Assistant Professor in the School of Natural Resources at the University of Nebraska-Lincoln, USA. Previously, she was a Postdoctoral Research Associate in the Department of Computer Science and Engineering at the University of Nebraska-Lincoln and an Early Career Research Fellow in the Institute of Advanced Study at the University of Warwick, UK. She received Bachelor of Technology in Information Technology from the West Bengal University of Technology and Master of Technology in Computer Science and Application from the University of Calcutta, India. She obtained her Ph.D. in Computer Science Engineering from the University of Warwick, UK. Her research focus is on biometrics, data science, and most recently, image-based plant phenotyping analysis. She co-leads the Plant Vision Initiative research group at the University of Nebraska-Lincoln.