4th Edition

Intelligent Systems for Engineers and Scientists A Practical Guide to Artificial Intelligence

By Adrian A. Hopgood Copyright 2022
    514 Pages 191 B/W Illustrations
    by CRC Press

    514 Pages 191 B/W Illustrations
    by CRC Press

    The fourth edition of this bestselling textbook explains the principles of artificial intelligence (AI) and its practical applications. Using clear and concise language, it provides a solid grounding across the full spectrum of AI techniques, so that its readers can implement systems in their own domain of interest.

    The coverage includes knowledge-based intelligence, computational intelligence (including machine learning), and practical systems that use a combination of techniques. All the key techniques of AI are explained—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), agents, objects, frames, symbolic learning, case-based reasoning, genetic algorithms and other optimization techniques, shallow and deep neural networks, hybrids, and the Lisp, Prolog, and Python programming languages. The book also describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control.

    Fully updated and revised, Intelligent Systems for Engineers and Scientists: A Practical Guide to Artificial Intelligence, Fourth Edition features:

    • A new chapter on deep neural networks, reflecting the growth of machine learning as a key technique for AI
    • A new section on the use of Python, which has become the de facto standard programming language for many aspects of AI

    The rule-based and uncertainty-based examples in the book are compatible with the Flex toolkit by Logic Programming Associates (LPA) and its Flint extension for handling uncertainty and fuzzy logic. Readers of the book can download this commercial software for use free of charge. This resource and many others are available at the author’s website: adrianhopgood.com.

    Whether you are building your own intelligent systems, or you simply want to know more about them, this practical AI textbook provides you with detailed and up-to-date guidance.

    1. Introduction
    2. Rule-Based Systems
    3. Handling Uncertainty: Probability and Fuzzy Logic
    4. Agents, Objects, and Frames
    5. Symbolic Learning
    6. Single-Candidate Optimization Algorithms
    7. Genetic Algorithms for Optimization
    8. Shallow Neural Networks
    9. Deep Neural Networks
    10. Hybrid Systems
    11. AI Programming Languages and Tools
    12. Systems for Interpretation and Diagnosis
    13. Systems for Design and Selection
    14. Systems for Planning
    15. Systems for Control
    16. The Future of Intelligent Systems


    Dr. Adrian Hopgood is Professor of Intelligent Systems and Director of Future & Emerging Technologies at the University of Portsmouth in the UK. He is a Chartered Engineer, Chartered IT Professional, Fellow of the BCS (British Computer Society, the Chartered Institute for IT), and a committee member for the BCS Specialist Group on Artificial Intelligence. He earned his BSc from the University of Bristol, PhD from the University of Oxford, and MBA from the Open University. After completing his PhD, he joined the AI team of Systems Designers PLC. That experience set the direction of his career toward the investigation of intelligent systems and their practical applications. After leaving Systems Designers, he spent 14 years at the Open University and remains attached as a visiting professor. During that period, he also spent two years at Telstra Research Laboratories in Australia, investigating the role of intelligent systems in telecommunications. He has subsequently worked for Nottingham Trent University, De Montfort University, Sheffield Hallam University, and the University of Liège, before joining the University of Portsmouth. Despite assuming several senior management positions during his career, he has never lost his passion for intelligent systems. He has supervised 20 PhD projects to completion and published more than 100 research articles. His website is adrianhopgood.com.

    The problem-oriented nature of the book and its pragmatism towards applied AI separates it from many other AI books. I have used the 2nd edition of the book on several aspects of modules taught in Data Analytics. As the new edition has an extended range of topics such as optimization algorithms, neural networks, deep learning, and intelligent agents, it also serves as an excellent and comprehensive reference book on AI topics for applied research.—Dr. Frederic Stahl, Senior Researcher at the German Research Center for Artificial Intelligence (DFKI GmbH)