1st Edition

Interfacial Electroviscoelasticity and Electrophoresis

ISBN 9781138113909
Published June 14, 2017 by CRC Press
194 Pages 46 B/W Illustrations

USD $84.95

Prices & shipping based on shipping country


Book Description

In the 20 years since the pilot plant experiments used to develop the concept of electroviscoelasticity, inroads have been made in the understanding of its many related processes. Interfacial Electroviscoelasticity and Electrophoresis meets a massive scientific challenge by presenting deeper research and developments in the basic and applied science and engineering of finely dispersed particles and related systems.

Introducing more profound and in-depth treatises related to the liquid-liquid finely dispersed systems (i.e., emulsions and double emulsions), this book describes a new theory developed through the authors’ work. These findings are likely to impact other research and applications in a wide array of other fields, considering that the modeling of liquid-liquid interfaces is key to numerous chemical manufacturing processes, including those used for emulsions, suspensions, nanopowders, foams, biocolloids, and plasmas. The authors cover phenomena at the micro, nano, and atto-scales, and their techniques, theory, and supporting data will be of particular interest to nanoscientists, especially with regard to the breaking of emulsions.

This groundbreaking book:

  • Takes an interdisciplinary approach to elucidate the momentum transfer and electron transfer phenomena
  • Covers less classical chemical engineering insight and modern molecular and atomic engineering
  • Reviews basic theory of electrokinetics, using the electrophoresis of rigid particles as an example

Built around the central themes of hydrodynamic, electrodynamic, and thermodynamic instabilities that occur at interfaces, this book addresses recently developed concepts in the physics, chemistry, and rheological properties of those well-studied interfaces of rigid and deformable particles in homo- and hetero-aggregate dispersed systems. The book also introduces the key phenomenon of electrophoresis, since it is widely adopted either as an analytical tool to characterize the surface properties of colloid-sized particles or in the separation and purification process of both laboratory and industrial scales. The applications and implications of the material presented in the book represent a major contribution to the advanced fundamental, applied, and engineering research of interfacial and colloidal phenomena.

Table of Contents

Classification of Finely Dispersed Systems
Classification Based on Scales
Classification Based on Geometry
Classification Based on Origin of Forces
Classification Based on Physical-Chemical Processes
Classification Based on Entities

Historical Review and Motivation
Pilot Plant for Uranium Extraction from Wet Phosphoric Acid
Entrainment Problems in Solvent Extraction: Performance of Demulsions
Marangoni Instabilities of the First and Second Order and a Possible Electrical Analog
Rheology: Various Constitutive Models of Liquids
Electroviscosity and Electroviscoelasticity of Liquid-Liquid Interfaces

Theory of Electroviscoelasticity
Previous Work
Structure: Electrified Interfaces—a New Constitutive Model of Liquids
Dynamics: Physical Formalism
Mathematical Formalisms

Experimental Confirmation
Results and Discussion
Assembled Measured, Calculated, and Estimated Data

The First Philosophical Breakpoint
The Second Philosophical Breakpoint
Concluding Remarks

General Governing Equations
Boundary Conditions
Perturbation Approach
Equilibrium Problem
Perturbed Problem
Boundary Effects
Governing Equations
Low Surface Potential Model
Boundary Conditions
Solution Procedure
Analytical Solution
Numerical Solution
Concluding Remarks
List of Symbols


Author Index

Subject Index

View More