
Introduction to Engineering Mechanics
A Continuum Approach, Second Edition
- This product is currently out of stock.
Preview
Book Description
Integrated Mechanics Knowledge Essential for Any Engineer
Introduction to Engineering Mechanics: A Continuum Approach, Second Edition uses continuum mechanics to showcase the connections between engineering structure and design and between solids and fluids and helps readers learn how to predict the effects of forces, stresses, and strains. The authors’ "continuum checklist" provides a framework for a wide variety of problems in solid and fluid mechanics. The essence of continuum mechanics, the internal response of materials to external loading, is often obscured by the complex mathematics of its formulation. By gradually building the formulations from one-dimensional to two- and three-dimensional, the authors help students develop a physical intuition for solid and fluid behavior and for the very interesting behavior of those materials including many biomaterials, between these extremes. This text is an accessible first introduction to the mechanics of all engineering materials, and incorporates a wide range of case studies highlighting the relevance of the technical content in societal, historical, ethical, and global contexts. It also offers a useful perspective for engineers concerned with biomedical, civil, chemical, mechanical, or other applications.
New in the Second Edition:
The latest edition contains significantly more examples, problems, and case studies than the first edition.
The 22 chapters in this text:
- Define and present the template for the continuum approach
- Introduce strain and stress in one dimension, develop a constitutive law, and apply these concepts to the simple case of an axially loaded bar
- Extend the concepts to higher dimensions by introducing the Poisson’s ratio and strain and stress tensors
- Apply the continuum sense of solid mechanics to problems including torsion, pressure vessels, beams, and columns
- Make connections between solid and fluid mechanics, introducing properties of fluids and strain rate tensor
- Address fluid statics
- Consider applications in fluid mechanics
- Develop the governing equations in both control volume and differential forms
- Emphasize real-world design applications
Introduction to Engineering Mechanics: A Continuum Approach, Second Edition provides a thorough understanding of how materials respond to loading: how solids deform and incur stress and how fluids flow. It introduces the fundamentals of solid and fluid mechanics, illustrates the mathematical connections between these fields, and emphasizes their diverse real-life applications. The authors also provide historical context for the ideas they describe and offer hints for future use.
Table of Contents
Introduction
A Motivating Example: Remodeling an Underwater Structure
Newton’s Laws: The First Principles of Mechanics
Equilibrium
Definition of a Continuum
Some Mathematical Basics: Scalars and Vectors
Problem-solving
Examples
Strain and Stress in One Dimension
Kinematics: Strain
The Method of Sections and Stress
Stress–Strain Relationships
Limiting Behavior
Equilibrium
Stress in Axially Loaded Bars
Deformation of Axially Loaded Bars
Equilibrium of an Axially Loaded Bar
Statically Indeterminate Bars
Thermal Effects
Saint-Venant’s Principle and Stress Concentrations
Strain Energy in One Dimension
Properties of Engineering Materials
A Road Map for Strength of Materials
Examples
Case Study 1: Collapse of the Kansas City Hyatt Regency Walkways
Strain and Stress in Higher Dimensions
Poisson’s Ratio
The Strain Tensor
The Stress Tensor
Generalized Hooke’s Law
Equilibrium
Formulating Two-Dimensional Elasticity Problems
Examples
Applying Strain and Stress in Multiple Dimensions
Torsion
Pressure Vessels
Transformation of Stress and Strain
Failure Prediction Criteria
Examples
Case Study 2: Pressure Vessels
Why Pressure Vessels Are Spheres and Cylinders?
Why Do Pressure Vessels Fail?
Beams
Calculation of Reactions
Method of Sections: Axial Force, Shear, Bending Moment
Shear and Bending Moment Diagrams
Integration Methods for Shear and Bending Moment
Normal Stresses in Beams and Geometric Properties of Sections
Shear Stresses in Beams
Examples
Case Study 3: Physiological Levers and Repairs
The Forearm Is Connected to the Elbow Joint
Fixing an Intertrochanteric Fracture
Beam Deflections
Governing Equation
Boundary Conditions
Beam Deflections by Integration and by Superposition
Discontinuity Functions
Beams with Non-Constant Cross-Section
Statically Indeterminate Beams
Beams with Elastic Supports
Strain Energy for Bent Beams
Deflections by Castigliano’s Second Theorem
Examples
Case Study 4: Truss-Braced Airplane Wings
Modeling and Analysis
What Does Our Model Tell Us?
Conclusions
Instability: Column Buckling
Euler’s Formula
Effect of Eccentricity
Examples
Case Study 5: Hartford Civic Arena
Connecting Solid and Fluid Mechanics
Pressure
Viscosity
Surface Tension
Governing Laws
Motion and Deformation of Fluids
Examples
Case Study 6: Mechanics of Biomaterials
Nonlinearity
Composite Materials
Viscoelasticity
Case Study 7: Engineered Composite Materials
Concrete
Plastics
Ceramics
Fluid Statics
Local Pressure
Force due to Pressure
Fluids at Rest
Forces on Submerged Surfaces
Buoyancy
Examples
Case Study 8: St. Francis Dam
Fluid Dynamics: Governing Equations
Description of Fluid Motion
Equations of Fluid Motion
Integral Equations of Motion
Differential Equations of Motion
Bernoulli Equation
Examples
Case Study 9: China’s Three Gorges Dam
Fluid Dynamics: Applications
How Do We Classify Fluid Flows?
What Is Going on Inside Pipes?
Why Can an Airplane Fly?
Why Does a Curveball Curve?
Case Study 10: Living with Water, and the Role of Technological Culture
Solid Dynamics: Governing Equations
Continuity, or Mass Conservation
Newton’s Second Law, or Momentum Conservation
Constitutive Laws: Elasticity
References
Appendix A: Second Moments of Area
Appendix B: A Quick Look at the del Operator
Appendix C: Property Tables
Appendix D: All the Equations
Index
Author(s)
Biography
Jenn Stroud Rossmann is an associate professor of mechanical engineering at Lafayette College. She earned her BS and PhD from the University of California, Berkeley. Her research interests include the study of blood flow in vessels affected by atherosclerosis and aneurysms. She has a strong commitment to teaching engineering methods and values to non-engineers, and she has developed several courses and workshops for liberal arts majors.
Clive L. Dym served as Fletcher Jones Professor of Engineering Design for 21 years, and is now professor emeritus of engineering, at Harvey Mudd College. He earned his BS from Cooper Union and his PhD from Stanford University. His primary interests are in engineering design and structural mechanics. He is the author of 18 books and has edited 11 others, including Analytical Estimates of Structural Behavior (with Harry Williams), CRC Press, 2012. Among his awards are the Merryfield Design Award (ASEE, 2002), the Spira Outstanding Design Educator Award (ASME, 2004), and the Gordon Prize (NAE, 2012).
Lori Bassman is a professor of engineering and director of the Laspa Fellowship Program in applied mechanics at Harvey Mudd College. She earned her BSE at Princeton University and her PhD at Stanford. Through a visiting appointment at the University of New South Wales in Australia, she pursues her research in physical metallurgy, and her other research interests include computational modeling of bird flight biomechanics.
Reviews
"This unique book by Rossmann, Dym, and Bassman provides an integrated foundation in solid and fluid mechanics that underpins a range of fields from bioengineering to water resources to aerospace design. Rather than being rooted in a particular engineering discipline (such as mechanical or civil), the book highlights the fundamental nature of continuum mechanics that makes it relevant to all engineers. With traditional disciplinary boundaries being crossed and new disciplines being created, this approach is just what is needed for today’s engineer."
—Andrew J. Guswa, Picker Engineering Program, Smith College, Northampton, Massachusetts, USA"This book would be a good textbook for engineering mechanics and biomechanics courses. It provides a concise description of solid and fluid mechanics using a continuum perspective. The book is written by building gradually from one-dimensional to two- and three-dimensional formulations, and by including illustrative and interesting real-world case study examples. … a unified introduction to solid and fluid mechanics and the connection between them."
—Professor Long-yuan Li, University of Plymouth, UK"… a very good mix of conceptual approaches and hands on examples. It covers concisely the most important topics without getting lost in too many specialty cases and examples. Compared to other classical books that spend most of the time on beam bending, this book covers the concepts of how forces act on matter in a generally applicable way which gives students a good feeling for what is going on inside the material rather than just how to use the formulas. The book also introduces some nice and very powerful techniques such as singularity functions that are often missing in other introductory books."
—Prof. Georg E. Fantner, École Polytechnique Fédéral de Lausanne