Introduction to Experimental Biophysics - A Laboratory Guide: 1st Edition (Paperback) book cover

Introduction to Experimental Biophysics - A Laboratory Guide

1st Edition

By Jay L. Nadeau

CRC Press

197 pages | 15 B/W Illus.

Purchasing Options:$ = USD
Paperback: 9781466557659
pub: 2015-04-01
$120.00
x
Hardback: 9781138407381
pub: 2018-06-28
$195.00
x
eBook (VitalSource) : 9780429194115
pub: 2015-03-25
from $57.50


FREE Standard Shipping!

Description

Easily Get Started with Biological Experiments

Introduction to Experimental Biophysics - A Laboratory Guide presents wet lab methods for courses in biophysics or molecular biology. A companion to the author’s highly praised An Introduction to Experimental Biophysics: Biological Methods for Physical Scientists, this manual offers a flexible course plan that permits completion of the labs in either a full term or intensive summer course.

Tested in a pedagogical setting, the experiments follow a logical progression beginning with a DNA construct. The book starts with the basics of molecular cloning: amplifying and purifying plasmid, plasmid mapping, and using restriction enzymes. Later experiments deal with more advanced, emerging techniques, such as the synthesis and characterization of quantum dots and gold nanoparticles, protein crystallization, and spectroscopic techniques.

This accessible guide will help both students and instructors in molecular biology, biophysics, and biomedical engineering. Students will understand how to use a variety of techniques in biological experiments while instructors will get practical guidance on preparing the experiments.

Reviews

"This book provides clear step-by-step protocols to understand basic molecular biology. I really like the explanations for why experiments fail!"

—David Irwin, Professor, Department of Laboratory Medicine and Pathobiology, University of Toronto

"This companion laboratory manual injects a jolt of excitement to the existing textbook. The textbook and laboratory guide set will soon become a favorite of instructors and students alike."

—Jay Tang, Brown University

"Dr. Nadeau’s textbook is a hugely useful resource for anybody performing biophysical experiments. It is also of practical importance to theoretical and computational biophysicists who want to be informed about the methods available to test their predictions."

—Jack A. Tuszynski, PhD, Allard Research Chair, Department of Oncology, and Professor, Department of Physics, University of Alberta

"A valuable guide for students interested in this interdisciplinary area of research as well as a useful reference for experts in the field."

—Françisco M. Raymo, Professor of Chemistry, University of Miami

Table of Contents

Molecular Cloning

Transformation of Competent Bacteria with a DNA Plasmid

Isolation of Plasmids by Miniprep and Restriction Enzyme Analysis

Designing a New Construct Using Restriction Enzymes (Computer Lab)

Restriction Enzymes

Ligation

Screening a Ligation and Choosing Recombinants

Use of Software to Design Primers for Cloning Using the Polymerase Chain Reaction (Computer Lab)

Running the Polymerase Chain Reaction

Gene Expression

Protein Expression and Purification

Characterization of Purified Protein

Protein Crystallization

Fluorescent Reporter Genes in Mammalian Cells

Transfecting Mammalian Cells with Custom-Designed Constructs

Screening Fluorescent Reporter Gene Expression in Mammalian Cells

Nanoparticles

Synthesis of Quantum Dots

Synthesis of Gold Nanoparticles

Electrophysiology

Electrophysiology: Lipid Bilayer Recording

Electrophysiology Alternative: Introduction to Lipid Vesicles

Appendices: Instructor Information and Guides

Appendix 1 Disposables and Supplies Needed

Appendix 2 Instructors’ Guide to Behind-the-Scenes Preparation

Appendix 3 Grading Recommendations and Guidelines

Appendix 4 Advanced Options: Customizing the Course

Index

About the Author

Jay L. Nadeau is an associate professor of biomedical engineering and physics at McGill University. Her research group was the first to label bacteria with quantum dots and explore the possibility of using fluorescent labels as tools for the detection of traces of extraterrestrial life. Dr. Nadeau’s research interests include nanoparticles, fluorescence imaging, and the development of instrumentation for detecting life elsewhere in the solar system.

Subject Categories

BISAC Subject Codes/Headings:
MED008000
MEDICAL / Biochemistry
SCI049000
SCIENCE / Life Sciences / Biology / Molecular Biology
SCI055000
SCIENCE / Physics