416 Pages
by
CRC Press
420 Pages
by
CRC Press
416 Pages
by
CRC Press
Also available as eBook on:
Continue Shopping
This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.
1. The Real and Complex Number Fields 2. Sequences and Series 3. Sequences and Series of Complex-Valued Functions 4. Introduction to Power Series 5. Some Elementary Topological Concepts 6. Complex Differential Calculus 7. The Exponential and Related Functions 8. Complex Line Integrals 9. Introduction to the Cauchy Theory 10. Zeros and Isolated Singularities of Analytic Functions 11. Residues and Rational Functions 12. Approximation of Analytic Functions by Rational Functions, and Generalizations of the Cauchy Theory 13. Conformal Mapping
Biography
Curtiss, J. H.