1st Edition

Introduction to Sustainable Energy Transformation

By Henryk Anglart Copyright 2022
    386 Pages 93 B/W Illustrations
    by CRC Press

    386 Pages 93 B/W Illustrations
    by CRC Press

    This textbook provides an accessible introduction to various energy transformation technologies and their influences on the environment. Here the energy transformation is understood as any physical process induced by humans, in which energy is intentionally transformed from one form to another.

    This book provides an accessible introduction to the subject: covering the theory, principles of design, operation, and efficiency of the systems in addition to discerning concepts such as energy, entropy, exergy, efficiency, and sustainability.

    It is not assumed that readers have any previous exposure to such concepts as laws of thermodynamics, entropy, exergy, fluid mechanics or heat transfer, and is therefore an ideal textbook for advanced undergraduate students.

    Key features:

    • Represents a complete source of information on sustainable energy transformation systems and their externalities.
    • Includes all existing and major emerging technologies in the field.
    • Chapters include numerous examples and problems for further learning opportunities.

    SECTION I Energy Forms and Resources


    Fundamental Concepts
    1.1 Units and Notation
    1.1.1 Units
    1.1.2 Notation
    1.1.3 Atomic and nuclear nomenclature
    1.2 Structure of Matter
    1.2.1 Matter
    1.2.2 The Atom 
    1.2.3 Sources of Nuclear and Atomic Information 
    1.3 Energy in Matter
    1.3.1 The Equivalence of Mass and Energy
    1.3.2 Internal Energy
    1.3.3 Energy in Chemical Reactions
    1.3.4 Energy in Nuclear Reactions Problems


    Energy Forms, Reserves, Supply, and Consumption
    2.1 Energy Forms
    2.1.1 Primary and Secondary Energy 
    2.1.2 Energy Carrier
    2.1.3 Final Energy
    2.1.4 Useful Energy 
    2.1.5 Electricity
    2.1.6 Heat
    2.2 Reserves of Energy-Containing Minerals
    2.2.1 Fossil Fuels 
    2.2.2 Uranium 
    2.2.3 Other Minerals
    2.3 Energy Supply
    2.3.1 Crude Oil
    2.3.2 Coal
    2.3.3 Natural Gas 
    2.3.4 Biofuels and Waste 
    2.3.5 Nuclear
    2.3.6 Hydro 
    2.3.7 Wind
    2.3.8 Solar 
    2.4 Power Sector 
    2.5 Energy Consumption 
    2.5.1 Aluminium Production 
    2.5.2 Cement Production
    2.5.3 Iron and Steel 
    2.5.4 Pulp and Paper 
    2.5.5 Chemicals
    2.5.6 Energy Services 
    2.5.7 Energy Efficiency and Environment Protection

    Elements of Sustainability
    3.1 Sustainability Goals
    3.2 Environment
    3.2.1 Atmosphere
    3.2.2 Biosphere 
    3.2.3 Hydrosphere
    3.3.1 Role of Economy in Sustainability 
    3.3.2 Ways to Promote Environmental Protection 
    3.3.3 Climate Change


    Mechanical and Electromagnetic Energy
    4.1 Forces and Fields 
    4.1.1 A Force
    4.1.2 A Field 
    4.2 Mechanical Energy 
    4.2.1 Kinetic Energy 
    4.2.2 Potential Energy
    4.2.3 Work and Power
    4.2.4 Linear and Angular Momentum
    4.2.5 Mechanical Energy Losses 
    4.2.6 Mechanical Energy Storage 
    4.3 Electromagnetic Energy
    4.3.1 Electrostatics 
    4.3.2 Electric Current
    4.3.3 Magnetism
    4.3.4 Induction
    4.3.5 Electrical Devices 
    4.3.6 Electromagnetic Energy Losses
    4.3.7 Electromagnetic Energy Storage

    Biological and Chemical Energy
    5.1 Photosynthesis 
    5.1.1 Mechanisms of Photosynthesis 
    5.1.2 Photosynthesis Efficiency 
    5.2 Food Energy
    5.2.1 Food Production
    5.2.2 Fertilizers
    5.3 Bioenergy
    5.3.1 Biomass
    5.3.2 Biogas
    5.3.3 Ethanol 
    5.3.4 Biodiesel 
    5.4 Fossil Fuels
    5.4.1 Coal
    5.4.2 Petroleum
    5.4.3 Natural Gas 
    5.5 Combustion
    5.5.1 Combustion of Gasoline 
    5.5.2 Combustion of Ethanol 
    5.5.3 Combustion of Coal
    5.5.4 Combustion of Hydrogen

    Nuclear Energy
    6.1 Binding Energy of a Nucleus
    6.2 Energy Transformation in Stars 
    6.3 Characteristics of the Nuclear Fission 
    6.3.1 Fission Products
    6.3.2 Neutron Emission
    6.3.3 Energy Released in Fission Reactions 
    6.4 Nuclear Fusion
    6.5 Radioactive Decay 

    Thermal Energy
    7.1 Introductory Definitions
    7.1.1 Thermodynamic Control Systems
    7.1.2 State Parameters
    7.1.3 Thermodynamic Equilibrium
    7.1.4 Thermodynamic Diagrams
    7.1.5 Thermodynamic Processes
    7.1.6 Thermodynamic Cycles 
    7.2 The Laws of Thermodynamics 
    7.2.1 Zeroth Law of Thermodynamics 
    7.2.2 First Law of Thermodynamics
    7.2.3 Second Law of Thermodynamics 
    7.3 Equation of State
    7.3.1 The Ideal Gas Law
    7.3.2 Ideal Gas Mixtures
    7.3.3 Van der Waals Equation of State
    7.3.4 Principle of Corresponding States 
    7.3.5 Phase Change
    7.4 Thermodynamic Processes in Heat Engines
    7.4.1 Isothermal Process 
    7.4.2 Isochoric Process 
    7.4.3 Isobaric Process 
    7.4.4 Adiabatic Process
    7.4.5 Polytropic Process
    7.5 Thermodynamic Cycles 
    7.5.1 Carnot Cycle 
    7.5.2 Rankine Cycle
    7.5.3 Brayton Cycle 
    7.5.4 Stirling Cycle 
    7.5.5 Kalina Cycle
    7.5.6 Combined Cycle
    7.6 Entropy Balance
    7.7 Principle of Maximum Work 
    7.8 Exergy Balance 
    7.8.1 Mechanical and Electrical Exergy 
    7.8.2 Thermal Exergy
    7.8.3 Chemical Exergy
    7.8.4 Total Exergy of Substance 
    7.8.5 Exergy of Heat Reservoirs
    7.8.6 Exergy Losses 

    Fluid Flow in Energy Systems
    8.1 Generalized Conservation Law
    8.1.1 General Integral Conservation Equation
    8.1.2 Stationary Control Volume 
    8.1.3 Moving Control Volume 
    8.1.4 Material Volume
    8.1.5 Local Differential Formulation
    8.2 Closure Relationships
    8.2.1 Total Stress Tensor 
    8.2.2 Heat Flux
    8.2.3 Entropy Generation
    8.3 Space-Averaged Flow in a Tube 
    8.3.1 Averaged Mass Conservation Equation 
    8.3.2 Averaged Momentum Conservation Equation 
    8.4 Internal Flows
    8.4.1 Average Flow Parameters 
    8.4.2 Wall Shear Stress and Friction Pressure Loss
    8.4.3 Macroscopic Energy Balance for Adiabatic Channel
    8.4.4 Local Pressure Losses
    8.5 External Flows 
    8.6 Multiphase Flows
    8.6.1 Notation and Nomenclature 
    8.6.2 Flow Patterns
    8.6.3 Homogeneous Equilibrium Model
    8.6.4 Homogeneous Relaxation Model
    8.6.5 Separated Flow Model 
    8.6.6 Drift Flux Model
    8.6.7 Two-Fluid Model 


    Heat Transfer in Energy Systems 
    9.1 Governing Equations 
    9.2 Conduction
    9.2.1 Steady-State Heat Conduction 
    9.2.2 Transient Heat Conduction
    9.3 Convection 
    9.3.1 Forced Convection 
    9.3.2 Natural Convection 
    9.4 Boiling 
    9.4.1 Nucleation and Ebullition Cycle
    9.4.2 Pool Boiling 
    9.4.4 Onset of Nucleate Boiling
    9.4.5 Subcooled Boiling
    9.4.6 Saturated Boiling 
    9.5 Boiling Crisis 
    9.5.1 Pool Boiling Crisis
    9.5.2 Flow Boiling Crisis
    9.6 Post-Boiling-Crisis Heat Transfer
    9.7 Radiation


    SECTION II Energy Transformation Systems

    Efficiency of Energy Transformation
    10.1 Power Generation Technologies 
    10.2 Energy Efficiency
    10.2.1 First-Law Efficiency
    10.2.2 Second-Law Efficiency 
    10.3 Energy Conservation and Storage


    Thermal Power 
    11.1 Introduction
    11.2 Condensing Power
    11.2.1 Schematic of a Basic System 
    11.2.2 Basic System Efficiency
    11.2.3 Efficiency Improvements 
    11.2.4 System Modelling 
    11.3 Stationary Gas Turbines
    11.4 Combined Cycle Power 
    11.5 Cogeneration and Trigeneration 

    Moving Water Energy
    12.1 Hydropower ................................................................................................209
    12.1.1 Hydropower Potential ....................................................................210
    12.1.2 Types of Water Turbines ................................................................210
    12.1.3 Types of Hydropower Plants..........................................................211
    12.1.4 Analysis of Water Turbine Efficiency............................................214
    12.2 Marine Current Power ................................................................................216
    12.3 Wave Power ................................................................................................216
    12.4 Tidal Power.................................................................................................217

    Wind Energy
    13.1 Energy of Moving Air
    13.2 Wind Power Machines.
    13.2.1 Horizontal-Axis Wind Turbines
    13.2.2 Darrieus turbines
    13.2.3 Savonius Turbines 
    13.3 Wind Energy Resources
    13.4 Wind Characteristics
    13.4.1 Temporal Variability of Wind 
    13.4.2 Global Circulation in Atmosphere
    13.4.3 Synoptic Scale Winds 
    13.4.4 Diurnal Wind Changes
    13.4.5 Modelling Wind Speed Variation
    13.4.6 Wind Rose - Wind Direction and Intensity
    13.5 Wind Turbine Aerodynamics
    13.5.1 Maximum Power of a Wind Turbine 
    13.5.2 Wind Turbine Efficiency 
    13.6 Environmental Effects of Wind Power 
    13.6.1 Noise
    13.6.2 Shadow Flicker 
    13.6.3 Visual Impact
    13.6.4 Bird Collisions 
    13.6.5 Site Planning

    Solar Energy 
    14.1 Solar Radiation on Earth
    14.1.1 Energy of the Sunlight 
    14.1.2 Sun Position 
    14.1.3 Components of Solar Radiation 
    14.1.4 Solar Radiation on Inclined Surfaces
    14.2 Solar Thermal Energy
    14.2.1 Absorption of Radiation
    14.2.2 Collectors 
    14.2.3 Concentrators
    14.3 Photovoltaic Solar Cells
    14.3.1 Theory
    14.3.2 Silicon Solar Cells 
    14.3.3 Advanced Solar Cells
    14.3.4 Photovoltaic Modules 

    Nuclear Energy
    15.1 Introduction
    15.1.1 Neutron Reactions
    15.1.2 Neutron Flux 
    15.1.3 The Neutron Cycle in Thermal Reactor
    15.2 Reactor Analysis and Design
    15.2.1 Steady-State Reactor Physics
    15.2.2 Thermal-Hydraulic Design 
    15.3 Reactor Kinetics and Dynamics
    15.4 Fuel Composition Changes
    15.4.1 Fuel Conversion and Breeding
    15.4.2 Fission Product Poisoning 
    15.5 Reactor Types 
    15.5.1 Currently Operable Reactors
    15.5.2 Advanced Reactors 
    15.6 Nuclear Fuel Cycle
    15.7 Nuclear Power Safety 
    15.8 Fusion Reactors and Other Technologies 
    15.8.1 Potential Fusion Reactions
    15.8.2 Fusion Power Density 
    15.8.3 Plasma Confinement Methods 
    15.8.4 Fusion Performance Criteria 
    15.8.5 ITER
    15.8.6 Other Technologies 

    SECTION III External Effects


    Energy and Environment 
    16.1 Climate
    16.2 Greenhouse effect 
    16.3 Earth energy imbalance 
    16.4 CO2 Concentration 
    16.5 Greenhouse Gas Emissions
    16.6 Air Pollution 
    16.7 Water Use and Contamination 
    16.8 Land Use
    16.9 Mineral Use 


    Risks, Safety, and Cost Analysis 
    17.1 Risk Analysis 
    17.1.1 Risk of Energy Systems 
    17.1.2 Probabilistic Risk Assessment 
    17.2 Hazards in Energy Systems 
    17.2.1 Solar Power
    17.2.2 Wind Power
    17.2.3 Hydropower 
    17.2.4 Combustion-based Thermal Power
    17.2.5 Geothermal Power 
    17.2.6 Nuclear Power
    17.3 Cost Analysis 
    17.3.1 Calculation Methods 
    17.3.2 Levelized Cost of Energy

    Appendix A Notation 
    Appendix B Constants 
    Appendix C Data
    Appendix D Mathematical Tools 

    Appendix E Units 

    References
    Index

    Biography

    Henryk Anglart is a professor of Nuclear Engineering at the KTH Royal Institute of Technology, Stockholm, Sweden, and at the Warsaw University of Technology (WUT), Warsaw, Poland. He received his MSc from WUT and his PhD from the Rensselaer Polytechnic Institute, Troy, NY. After his eighteen-year career as a research and development engineer at Westinghouse in Sweden, he accepted a tenure position at KTH, where he has supervised many PhD students and post-doctoral fellows, and has taught several courses in nuclear engineering. In addition to research and teaching, prof. Henryk Anglart was serving for a long time as head of Reactor Technology Division and Deputy Director of the Physics Department. He is currently a Director of Nuclear Technology Center at KTH. Prof. Henryk Anglart authored and co-authored over 200 journal, conference and other scientific publications. He is also an author of three textbooks used in teaching of nuclear engineering courses at WUT and KTH.