1st Edition

Laser-Based Measurements for Time and Frequency Domain Applications A Handbook

    764 Pages
    by CRC Press

    764 Pages 374 B/W Illustrations
    by CRC Press

    Foreword by Nobel laureate Professor Theodor W. Hänsch of Ludwig-Maximilians-Universität München

    Based on the authors’ experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications.

    After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions.

    Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas—including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology—revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.

    Shedding Light on the Art of Timekeeping. Characterization and Control of Harmonic Oscillators. Passive Resonators. Continuous-Wave Coherent Radiation Sources. High-Resolution Spectroscopic Frequency Measurements. Time and Frequency Measurements with Pulsed Laser Systems. Frequency Standards. Future Trends in Fundamental Physics and Applications. Bibliography.


    Pasquale Maddaloni is a research scientist at the National Institute for Optics (INO) of the National Research Council (CNR) in Naples. His research focuses on nonlinear optics and precision spectroscopy assisted by optical frequency comb synthesizers as well as cold stable molecules. He earned a Ph.D. in physics from the University of Padua.

    Marco Bellini is a senior researcher at the National Institute for Optics (INO) of the National Research Council (CNR) in Florence. His research deals with ultrashort and ultraintense laser pulses to produce highly nonlinear interactions with matter, the production and applications of high-order laser harmonics, and the development of new tools in quantum optics. He earned a Ph.D. in physics from the University of Florence.

    Paolo De Natale is a staff scientist and director of the National Institute for Optics (INO) of the National Research Council (CNR) in Florence. He is a SPIE fellow, is the author of 200 papers, and holds five patents. His research activities focus on atomic, molecular, and optical physics, including novel optoelectronic devices, sub-Doppler molecular spectroscopy, optical frequency comb synthesizers, quantum cascade lasers, fiber-based optical sensors, and molecular gas sensing.

    "… [in] this handbook … the story and the complexity of the variety of methods for improving optical frequency metrology unfold, in particular, the successive improvements of the performance of devices based upon lasers. … a pleasure to read."
    Contemporary Physics, 2014

    "This is a beautiful and monumental work … easy to read thanks to its clear and concise style. … a must-read for anybody working in laser research and industry, and will be particularly helpful for Ph.D. students."
    —Mircea Dragoman, Optics & Photonics News, January 2014

    "The authors have made a considerable effort to make this book useful and interesting to different kinds of readers: they provide a detailed treatment of the basic concepts of time and frequency measurements, carefully describe different kinds of lasers and some of the most advanced laser-based measurement techniques, and finally present the latest developments in the field, with a hint to the possible future trends in applications and fundamental science.
    Being among the many important actors in this long story, the authors of this book are privileged witnesses of the evolution of time and frequency measurements, and can provide an informed and wide vision of this developing field from many different viewpoints."
    —From the Foreword by Nobel Laureate Professor Theodor W. Hänsch, Ludwig-Maximilians-Universität München