Learning Approaches in Signal Processing: 1st Edition (Hardback) book cover

Learning Approaches in Signal Processing

1st Edition

Edited by Wan-Chi Siu, Lap-Pui Chau, Liang Wang, Tieniu Tang

Jenny Stanford Publishing

654 pages | 253 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9789814800501
pub: 2018-11-28
SAVE ~$49.99
$249.95
$199.96
x
eBook (VitalSource) : 9780429061141
pub: 2018-12-07
from $124.98


FREE Standard Shipping!

Description

Coupled with machine learning, the use of signal processing techniques for big data analysis, Internet of things, smart cities, security, and bio-informatics applications has witnessed explosive growth. This has been made possible via fast algorithms on data, speech, image, and video processing with advanced GPU technology. This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc. The applications include super-resolution imaging, fringe projection profilometry, human activities detection/capture, gesture recognition, spoken language processing, cooperative networks, bioinformatics, DNA, and healthcare.

Table of Contents

Tutorial And Overview Of Learning Approaches

Introduction to Random Tree and Random Forests for Fast Signal Processing and Object Classification

Wan-Chi Siu et al.

Sparsity Based Dictionary Learning Techniques

Raju Ranjan, Sumana Gupta, and K. S. Venkatesh

A Comprehensive Survey of Persistent Homology for Pattern Recognition

Zhen Zhou et al.

Low-Rank Matrix Estimation and Its Applications in Signal Processing and Machine Learning

Aimin Jiang and Hon Keung Kwan and Yanping Zhu

Introduction to Face Recognition and Its Recent Work

Tianrui Liu et al.

Filter Design And Multirate Signal Processing

The Ensemble Kalman Filter

Pedro A. M. Fonini and Paulo S. R. Diniz

Teaching Programming and Debugging Techniques for Multirate Signal Processing

Fred Harris and Chris Dick

Imaging Technologies

Learning Approaches for Super-Resolution Imaging

Wan-Chi Siu et al.

Non-Contact Three-Dimensional Measurement Using the Learning Approach

Daniel P. K. Lun and B. Budianto

Biometrics And Health Applications

Computational and Learning Aspects of DNA Sequences

Ngai-Fong Law

Visual Food Recognition for Dietary Logging and Health Monitoring

Sharmili Roy et al.

Motions In Videos, Pose Recognition And Human Activity Analysis

Learning Randomized Decision Trees for Human Behavior Capture

Zhen-Peng Bian et al.

Deep Learning in Gesture Recognition Based on sEMG Signals

P. Tsinganos et al.

Tutorial And Overview Of Learning Approaches

Introduction to Random Tree and Random Forests for Fast Signal Processing and Object Classification

Wan-Chi Siu et al.

Sparsity Based Dictionary Learning Techniques

Raju Ranjan, Sumana Gupta, and K. S. Venkatesh

A Comprehensive Survey of Persistent Homology for Pattern Recognition

Zhen Zhou et al.

Low-Rank Matrix Estimation and Its Applications in Signal Processing and Machine Learning

Aimin Jiang and Hon Keung Kwan and Yanping Zhu

Introduction to Face Recognition and Its Recent Work

Tianrui Liu et al.

Filter Design And Multirate Signal Processing

The Ensemble Kalman Filter

Pedro A. M. Fonini and Paulo S. R. Diniz

Teaching Programming and Debugging Techniques for Multirate Signal Processing

Fred Harris and Chris Dick

Imaging Technologies

Learning Approaches for Super-Resolution Imaging

Wan-Chi Siu et al.

Non-Contact Three-Dimensional Measurement Using the Learning Approach

Daniel P. K. Lun and B. Budianto

Biometrics And Health Applications

Computational and Learning Aspects of DNA Sequences

Ngai-Fong Law

Visual Food Recognition for Dietary Logging and Health Monitoring

Sharmili Roy et al.

Motions In Videos, Pose Recognition And Human Activity Analysis

Learning Randomized Decision Trees for Human Behavior Capture

Zhen-Peng Bian et al.

Deep Learning in Gesture Recognition Based on sEMG Signals

P. Tsinganos et

al. Measuring Precise Inter-Person Physiological Synchrony and Its Trends through Adaptive, Data-Driven Algorithms: Combining NA-MEMD and the Synchrosqueezing Transform to Identify Synchronised Respiratory and HRV Frequencies

Apit Hemakoma et al.

Language Processing, Cooperative Network And Communications

Multitask Cooperative Networks and their Diverse Applications

Saeid Sanei et al.

Spoken Language Processing: From Isolated Word Recognition to Neural Representation of Syntactical Structures, Based upon Kernel Memory

Tetsuya Hoya

Discussion On Ai For Healthcare

The Brave New World of Machine Paulina Chan and Stephen K. NgLearning in AI and Medicine

Paulina Chan and Stephen K. Ng

Measuring Precise Inter-Person Physiological Synchrony and Its Trends through Adaptive, Data-Driven Algorithms: Combining NA-MEMD and the Synchrosqueezing Transform to Identify Synchronised Respiratory and HRV Frequencies

Apit Hemakoma et al.

Language Processing, Cooperative Network And Communications

Multitask Cooperative Networks and their Diverse Applications

Saeid Sanei et al.

Spoken Language Processing: From Isolated Word Recognition to Neural Representation of Syntactical Structures, Based upon Kernel Memory

Tetsuya Hoya

Discussion On Ai For Healthcare

The Brave New World of Machine Learning in AI and Medicine

Paulina Chan and Stephen K. Ng

About the Editors

Wan-Chi Siu, a PhD graduate of Imperial College London, is emeritus professor and was chair professor, head (Electronic and Information Engineering), and dean of the Engineering Faculty of the Hong Kong Polytechnic University. He was the convener of the First Engineering/IT Panel of the 1993 Research Assessment Exercise in Hong Kong and vice president, conference board chair, and core member of the Board of Governors of the IEEE Signal Processing Society (2012–2014). Prof. Siu is a life-fellow of the IEEE, fellow of the IET and the HKIE, and president (2017–2018) of the Asia Pacific Signal and Information Processing Association. He has been a guest editor/subject editor/associate editor for IEEE Transactions on Circuits and Systems, Image Processing, Circuits and Systems for Video Technology, and Electronics Letters, published over 500 research papers, and organized IEEE-sponsored flagship conferences as the TPC chair (ISCAS1997) and general chair (ICASSP2003 and ICIP2010).

Lap-Pui Chau works in the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, and is a fellow of the IEEE. He was chair of the Technical Committee on Circuits and Systems for Communications of the IEEE Circuits and Systems Society (2010–2012) and has served as an associate editor for five IEEE journals. Dr. Chau has also been an IEEE Distinguished Lecturer (2009–2016).

Liang Wang is full professor at the Institute of Automation, Chinese Academy of Sciences; deputy director of the National Laboratory of Pattern Recognition, China; secretary-general of the Technical Committee on Computer Vision, China Computer Federation; and director of the Technical Committee on Visual Big Data, China Society of Image and Graphics. He is a senior member of the IEEE and a fellow of the International Association of Pattern Recognition.

Tieniu Tan, a PhD graduate of Imperial College London, joined the Institute of Automation, Chinese Academy of Sciences, as a full professor in 1998. He is director of the Center for Research on Intelligent Perception and Computing at CASIA and deputy director of the Liaison Office of the Central People’s Government in the Hong Kong S.A.R. He has published 14 edited books and monographs and more than 600 research papers. Prof. Tan is a fellow of The World Academy of Sciences, Chinese Academy of Sciences, IEEE, and IAPR, an international fellow of the Royal Academy of Engineering, UK, and a corresponding member of the Brazilian Academy of Sciences.

About the Series

Pan Stanford Series on Digital Signal Processing

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
COM011000
COMPUTERS / Systems Architecture / General
COM037000
COMPUTERS / Machine Theory
COM051240
COMPUTERS / Software Development & Engineering / Systems Analysis & Design
COM059000
COMPUTERS / Computer Engineering
SCI086000
SCIENCE / Life Sciences / General
TEC067000
TECHNOLOGY & ENGINEERING / Signals & Signal Processing