Mechanics of Materials  book cover
1st Edition

Mechanics of Materials

ISBN 9781439877364
Published August 23, 2013 by CRC Press
466 Pages 495 B/W Illustrations

USD $140.00

Prices & shipping based on shipping country


Book Description

A systematic presentation of theory, procedures, illustrative examples, and applications, Mechanics of Materials provides the basis for understanding structural mechanics in engineering systems such as buildings, bridges, vehicles, and machines. The book incorporates the fundamentals of the subject into analytical methods, modeling approaches, numerical methods, experimental procedures, numerical evaluation procedures, and design techniques.

It introduces the fundamentals, and then moves on to more advanced concepts and applications. It discusses analytical methods using simple mathematics, examples and experimental techniques, and it includes a large number of worked examples and case studies that illustrate practical and real-world usage.

  • In the beginning of each chapter, states and summarizes the objectives and approaches, and lists the main topics covered in the chapter
  • Presents the key issues and formulas in a "Summary Sheet" at the end of each chapter
  • Provides as appendices at the end of the book, useful reference data and advanced material that cannot be conveniently integrated into the main chapters

Mechanics of Materials is a result of the author's experience in teaching an undergraduate course in mechanics of materials consisting of mechanical, manufacturing, materials, mining and mineral engineering students and in teaching other courses in statics, dynamics, modeling, vibration, instrumentation, testing, design, and control. This book is suitable for anyone with a basic engineering background. The practical considerations, design issues, and engineering techniques, and the snapshot-style presentation of advanced theory and concepts, makes this a useful reference for practicing professionals as well.

Table of Contents

Mechanics of Materials


What Is Mechanics of Materials?

Subject Definition

Application of the Subject

Applicable Engineering Fields

Useful Terms

History of Mechanics of Materials

Basic Problem Scenarios

Problem Solution

Organization of the Book


Statics: A Review



Support Reactions

Analysis of Trusses

Distributed Forces

Statically Indeterminate Structures





Definition of Stress

Normal Stress under Axial Loading

Bearing Stress

Shear Stress

Stress Transformation in a Bar under Axial Loading





Normal Strain

Shear Strain

Thermal Strain

Measurement of Strain


Mechanical Properties of Materials



Stress–Strain Behavior

Stress–Strain Characteristics

Hooke’s Law

Poisson’s Ratio

Material Types and Behavior

Strain Energy


Axial Loading



Saint-Venant’s Principle

Axially Loaded Member

Principle of Superposition

Statically Indeterminate Structures

Thermal Effects

Stress Concentrations


Torsion in Shafts



Analysis of Circular Shafts

Formulation of Strain

Formulation of Stress

Angle of Twist

Statically Indeterminate Torsion Members

Solid Noncircular Shafts

Thin-Walled Tubes

Composite Shafts


Bending in Beams



Shear and Moment Diagrams

Flexure Formula

Composite Beams

Transverse Shear

Beam Deflection

Statically Indeterminate Beams


Stress and Strain Transformations



Stress Transformation

Mohr’s Circle of Plane Stress

Principal Stresses

Three-Dimensional State of Stress

Thin-Walled Pressure Vessels

Strain Transformation

Mohr’s Circle of Plane Strain

Strain Measurement

Theories of Failure




View More



Dr. Clarence W. de Silva, P.E., Fellow ASME and Fellow IEEE, is a professor of mechanical engineering at the University of British Columbia, Vancouver, and occupies the Senior Canada Research Chair Professorship in Mechatronics and Industrial Automation. He earned Ph.D. degrees from the Massachusetts Institute of Technology, USA and the University of Cambridge, England, and received an honorary D.Eng. degree from University of Waterloo, Canada. De Silva has received several awards, made 32 keynote addresses at international conferences, and served as editor on 14 journals. He has 21 technical books, 18 edited books, 44 book chapters, 220 journal articles, and 250 conference papers in publication.


"On the basis of what I have seen so far, this would appear to be a book very well-suited to a first course in Mechanics of Materials (etc.). Topics are explained in an admirable degree of detail, which should make the book particularly student-friendly. The author brings a wealth of practical experience, with good examples from engineering practice."
––Professor Roger T. Fenner, Department of Mechanical Engineering, Imperial College London, UK

"I like the presentation style that each part starts with a concise itemized objective statement; then the basic knowledge is presented with both figures and concise descriptions and equations; after that, examples with learning objectives are given; finally a concise summary sheet is given. The selection of topics is very good."
––Simon X. Yang, University of Guelph, Ontario, Canada

"… very clear and the presentations are very easy to follow. Through the use of many examples in the specific application domains, such as automobiles, airplanes, robots, machine tools, engines, bridges, elevated guideways, and buildings, this book bridges the fundamental gap between the existing research literatures and educational texts and provides a comprehensive and authoritative introduction to the key concepts, difficulties and current developments of mechanics of materials. It will serve well both undergraduates and graduates as an outstanding text it pertains to, and in the meantime, it elegantly stands out many important research topics and issues on the modeling, analysis, simulation, design, operation, testing, and diagnosis of relevant engineering systems, which will be very helpful for engineers and researchers in these areas."
—Peter X. Liu, Carleton University