Multi-Label Dimensionality Reduction: 1st Edition (e-Book) book cover

Multi-Label Dimensionality Reduction

1st Edition

By Liang Sun

Chapman and Hall/CRC

208 pages

Purchasing Options:$ = USD
Hardback: 9781439806159
pub: 2013-11-04
$120.00
x
eBook (VitalSource) : 9780429148200
pub: 2016-04-19
from $28.98


FREE Standard Shipping!

Description

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

Table of Contents

Introduction. Partial Least Squares. Canonical Correlation Analysis. Hypergraph Spectral Learning. A Scalable Two-Stage Approach for Dimensionality Reduction. A Shared-Subspace Learning Framework. Joint Dimensionality Reduction and Classification. Nonlinear Dimensionality Reduction: Algorithms and Applications. Appendix. References. Index.

About the Author

Liang Sun is a scientist in the R&D of Opera Solutions, a leading company in big data science and predictive analytics. He received a PhD in computer science from Arizona State University. His research interests lie broadly in the areas of data mining and machine learning. His team won second place in the KDD Cup 2012 Track 2 and fifth place in the Heritage Health Prize. In 2010, he won the ACM SIGKDD best research paper honorable mention for his work on an efficient implementation for a class of dimensionality reduction algorithms.

Shuiwang Ji is an assistant professor of computer science at Old Dominion University. He received a PhD in computer science from Arizona State University. His research interests include machine learning, data mining, computational neuroscience, and bioinformatics. He received the Outstanding PhD Student Award from Arizona State University in 2010 and the Early Career Distinguished Research Award from Old Dominion University's College of Sciences in 2012.

Jieping Ye is an associate professor of computer science and engineering at Arizona State University, where he is also the associate director for big data informatics in the Center for Evolutionary Medicine and Informatics and a core faculty member of the Biodesign Institute. He received a PhD in computer science from the University of Minnesota, Twin Cities. His research interests include machine learning, data mining, and biomedical informatics. He is an associate editor of IEEE Transactions on Pattern Analysis and Machine Intelligence. He has won numerous awards from Arizona State University and was a recipient of an NSF CAREER Award. His papers have also been recognized at the International Conference on Machine Learning, KDD, and the SIAM International Conference on Data Mining (SDM).

Subject Categories

BISAC Subject Codes/Headings:
BUS061000
BUSINESS & ECONOMICS / Statistics
COM000000
COMPUTERS / General
COM021000
COMPUTERS / Database Management / General