Online Portfolio Selection: Principles and Algorithms, 1st Edition (Hardback) book cover

Online Portfolio Selection

Principles and Algorithms, 1st Edition

By Bin Li, Steven Chu Hong Hoi

CRC Press

212 pages | 22 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781482249637
pub: 2015-11-05
SAVE ~$35.00
$175.00
$140.00
x
eBook (VitalSource) : 9781351229180
pub: 2018-10-30
from $32.48


FREE Standard Shipping!

Description

With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment.

The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that:

  1. Introduce OLPS and formulate OLPS as a sequential decision task
  2. Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning
  3. Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques
  4. Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art
  5. Investigate possible future directions

Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment.

Readers are encouraged to visit the authors’ website for updates: http://olps.stevenhoi.org.

Reviews

"Ever since access to financial data, storage capacity, and computing power stopped acting as barriers to entry, institutional-quality asset allocation solutions have become widely available to individual investors and financial advisors. Coupled with easy access to inexpensive building blocks like Exchange-Traded Funds, this dynamic has brought the spectre of digital disruption to the asset management industry. In Online Portfolio Selection, Li and Hoi do an excellent job explaining what’s actually under the hood of the "robo-advisor" applications. Unlike many books on related financial technology subjects, they don’t leave the reader with only high-level rhetoric on machine learning and financial technology, but instead roll up their sleeves and delve into the nuts and bolts of the various algorithms that power this irreversible trend. A must-read."

—Guy Weyns, PhD., Partner, NGEN Capital, London

"This is an excellent book showing a comprehensive menu of state-of-the-art online machine-learning algorithms in online portfolio selection and trading. It explains clearly how different algorithms can perform based on data-driven patterns that are exploited using intensive computational methods. It is a must-read for serious quantitative traders."

Lim Kian Guan, PhD., OUB Chair Professor of Quantitative Finance, Singapore Management University

Table of Contents

I: INTRODUCTION

Introduction

Background

What Is Online Portfolio Selection?

Methodology

Book Overview

Problem Formulation

Problem Settings

Transaction Costs and Margin Buying Models

Evaluation

Summary

II: Principles

Benchmarks

Buy-and-Hold Strategy

Best Stock Strategy

Constant Rebalanced Portfolios

Follow the Winner

Universal Portfolios

Exponential Gradient

Follow the Leader

Follow the Regularized Leader

Summary

Follow the Loser

Mean Reversion

Anticorrelation

Summary

Pattern Matching

Sample Selection Techniques

Portfolio Optimization Techniques

Combinations

Summary

Meta-Learning

Aggregating Algorithms

Fast Universalization

Online Gradient and Newton Updates

Follow the Leading History

Summary

III: Algorithms

Correlation-Driven Nonparametric Learning

Preliminaries

Formulations

Algorithms

Analysis

Summary

Passive–Aggressive Mean Reversion

Preliminaries

Formulations

Algorithms

Analysis

Summary

Confidence-Weighted Mean Reversion

Preliminaries

Formulations

Algorithms

Analysis

Summary

Online Moving Average Reversion

Preliminaries

Formulations

Algorithms

Analysis

Summary

IV: Empirical Studies

Implementations

The OLPS Platform

Data

Setups

Performance Metrics

Summary

Empirical Results

Experiment 1: Evaluation of Cumulative Wealth

Experiment 2: Evaluation of Risk and Risk-Adjusted Return

Experiment 3: Evaluation of Parameter Sensitivity

Experiment 4: Evaluation of Practical Issues

Experiment 5: Evaluation of Computational Time

Experiment 6: Descriptive Analysis of Assets and Portfolios

Summary

Threats to Validity

On Model Assumptions

On Mean Reversion Assumptions

On Theoretical Analysis

On Back-Tests

Summary

V: Conclusion

Conclusions

Future Directions

Appendix A: OLPS: A Toolbox for Online Portfolio Selection

Introduction

Framework and Interfaces

Strategies

Summary

Appendix B: Proofs and Derivations

Proof of CORN

Derivations of PAMR

Derivations of CWMR

Derivation of OLMAR

Appendix C: Supplementary Data and Portfolio Statistics

Bibliography

Index

About the Authors

Dr. Bin Li received a bachelor’s degree in computer science from Huazhong University of Science and Technology, Wuhan, China, and a bachelor’s degree in economics from Wuhan University, Wuhan, China, in 2006. He earned a PhD degree from the School of Computer Engineering of Nanyang Technological University, Singapore, in 2013. He completed the CFA Program in 2013 and is currently an associate professor of finance at the Economics and Management School of Wuhan University. Dr. Li was a postdoctoral research fellow at the Nanyang Business School of Nanyang Technological University. His research interests are computational finance and machine learning. He has published several academic papers in premier conferences and journals.

Dr. Steven C.H. Hoi received his bachelor’s degree in computer science from Tsinghua University, Beijing, China, in 2002, and both his master’s and PhD degrees in computer science and engineering from The Chinese University of Hong Kong, Hong Kong, China, in 2004 and 2006, respectively. He is currently an associate professor in the School of Information Systems, Singapore Management University, Singapore. Prior to joining SMU, he was a tenured associate professor in the School of Computer Engineering, Nanyang Technological University, Singapore. His research interests are machine learning and data mining and their applications to tackle real-world big data challenges across varied domains, including computational finance, multimedia information retrieval, social media, web search and data mining, computer vision and pattern recognition, and so on.

Subject Categories

BISAC Subject Codes/Headings:
BUS027000
BUSINESS & ECONOMICS / Finance
COM037000
COMPUTERS / Machine Theory
MAT029000
MATHEMATICS / Probability & Statistics / General