Optimisation of Dynamic Heterogeneous Rainfall Sensor Networks in the Context of Citizen Observatories: 1st Edition (Paperback) book cover

Optimisation of Dynamic Heterogeneous Rainfall Sensor Networks in the Context of Citizen Observatories

1st Edition

By Juan Carlos Chacon-Hurtado

CRC Press

195 pages

Purchasing Options:$ = USD
Paperback: 9780367417062
pub: 2019-11-12
SAVE ~$15.99
Available for pre-order
$79.95
$63.96
x


FREE Standard Shipping!

Description

Precipitation drives the dynamics of flows and storages in water systems, making its monitoring essential for water management. Conventionally, precipitation is monitored using in-situ and remote sensors. In-situ sensors are arranged in networks, which are usually sparse, providing continuous observations for long periods at fixed points in space, and due to the high costs of such networks, they are often sub-optimal. To increase the efficiency of the monitoring networks, we explore the use of sensors that can relocate as rainfall events develop (dynamic sensors), as well as increasing the number of sensors involving volunteers (citizens). This research focusses on the development of an approach for merging heterogeneous observations in non-stationary precipitation fields, exploring the interactions between different definitions of optimality for the design of sensor networks, as well as development of algorithms for the optimal scheduling of dynamic sensors. This study was carried out in three different case studies, including Bacchiglione River (Italy), Don River (U.K.) and Brue Catchment (U.K.) The results of this study indicate that optimal use of dynamic sensors may be useful for monitoring precipitation to support water management and flow forecasting.

Table of Contents

1 Introduction

2 Literature review and proposed framework

3 Case studies

4 Advancing Kriging methods for merging heterogeneous data sources in non-stationary precipitation fields

5 Optimisation of static precipitation sensor networks and robustness analysis

6 Optimisation of dynamic precipitation sensor networks

7 Conclusions and recommendations

About the Author

Juan Carlos Chacon-Hurtado is a Civil Engineer from the Pontificia Universidad Javeriana Cali, with an MSc Water Science and Engineering with specialisation in Hydroinformatics from UNESCO-IHE, and with various academic and professional interests related to the use of advanced ITC tools to address water-related problems (hydroinformatics). Juan Carlos has experience in areas of hydrological modelling, optimisation, uncertainty analysis, data assimilation, water loss control and scientific programming. Juan Carlos is currently a Postdoc researcher in multi-criteria decision analysis applied to sewer asset management at the Delft University of Technology, The Netherlands.

About the Series

IHE Delft PhD Thesis Series

IHE Delft PhD programme leads to a deepening of a field of specialisation. PhD fellows do scientific research, often with conclusions that directly influence their region. At IHE Delft, PhD researchers from around the world participate in problem-focused and solution-oriented research on development issues, resulting in an inspiring research environment. PhD fellows work together with other researchers from many countries dealing with topics related to water and the environment.

PhD research is often carried out in the ‘sandwich’ model. Preparation and final reporting – the first and last portion of the programme – are carried out in Delft, while actual research is done in the fellow’s home country, under co-supervision of a local institute. Regular contacts with the promotor are maintained through visits and long-distance communication. This enables researchers to employ solutions directly to problems in their geographical region.

IHE Delft PhD degrees are awarded jointly with a university. The degrees are highly valued and fully recognised in all parts of the world.

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
SCI026000
SCIENCE / Environmental Science
TEC009020
TECHNOLOGY & ENGINEERING / Civil / General
TEC010030
TECHNOLOGY & ENGINEERING / Environmental / Water Supply