Polycystic Kidney Disease: 1st Edition (Hardback) book cover

Polycystic Kidney Disease

1st Edition

By Jinghua Hu, Yong Yu

CRC Press

344 pages | 20 Color Illus. | 30 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781138603899
pub: 2019-11-30
Available for pre-order
$129.95
x


FREE Standard Shipping!

Description

This volume focuses on the investigatory methods applied to autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. ADPKD is caused by mutations in PKD1 and TRPP2, two integral membrane proteins that function as receptor/ion channel in primary cilia of tubular epithelial cells. Thus, ADPKD belongs to ciliopathies, a group of disordered caused by abnormal cilia formation or function. This proposed book will cover the state-of-the-art methods ranging from molecular biology, biochemistry, electrophysiology, to tools in model animal studies.

Key selling features:

  • Explores the role of cilia in polycystic kidney disease
  • Focuses on myriad state-of-the-art methods and techniques
  • Reviews specific mutations integral to this autosomal genetic disease
  • Includes discussions of model systems

Table of Contents

Studying cAMP signaling in ADPKD. Human Genetics of ADPKD. Epigenetics analysis of ADPKD. The cleavage of Polycystin and its physiological significant. Trafficking of polycystins in polarized epithelial cells. The Ciliary localziaiton of Polycystins. Electrophysiological recording polycystin-2 channel with two-electrod voltage clamp. Function and regulation of polycystin-L channel. Functional study of the polycstin-2 channel on primary cilia. Polycystin and calcium signaling in cell. Polycystin-2-dependent intraciliary calcium oscillations and the left-right asymmetry assembly in vertebrate. Clamydomanas as a model for PKD research. Polycystin and cilia in C. elegans. Renal regeneration. Whole exome sequencing for defining genetic landscapes in ADPKD. Molecular diagnosis of autosomal dominant polycystic kidney disease. Polycystions act as mechanosensors. Imaging analysis of ADPKD. NGS sequencing in ADPKD or ciliopathies.

About the Authors

Jinghua Hu is an Associate Professor in Biochemistry and Molecular Biology at the Mayo Clinic in Rochester, Minnesota. He uses various model systems to study the correlation between cilia dysfunction and cilia-related diseases (collectively known as ciliopathies). The long-term goals of Dr. Hu's laboratory are to understand how cilia form and function; determine the pathogenesis underlying ciliopathies; and design therapies to prevent, delay or halt disease progression. The major experimental approaches used in Dr. Hu's laboratory include molecular genetics, biochemistry, real-time imaging and model organisms. Dr. Hu's research has been funded by the National Institutes of Health and PKD Foundation, among other organizations.

Yong Yu is an Associate Professor and Graduate Director for Biological Sciences, Molecular and Cellular Physiology and Neurobiology at St John’s University. The research in Yu lab is focusing on the molecular mechanisms of assembly, function and regulation of ion channels and membrane receptors. Currently they are interested in the transient receptor potential (TRP) channels, proteins which are essential for sensory physiology and have been shown to play crucial roles in human diseases. So far, TRP channels has been shown to be involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. They use cultured mammalian cells, Xenopus oocytes and zebrafish as model systems, and study structure and function of ion channels and receptors with a combined molecular biology, biochemistry, biophysics, x-ray crystallography, and electrophysiology approach. Research in Yu lab is funded by the National Institutes of Health.

About the Series

Methods in Signal Transduction Series

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
MED027000
MEDICAL / Endocrinology & Metabolism
MED055000
MEDICAL / Nephrology
SCI017000
SCIENCE / Life Sciences / Cytology
SCI086000
SCIENCE / Life Sciences / General