1st Edition

Recommender Systems
Algorithms and Applications



  • Available for pre-order. Item will ship after June 1, 2021
ISBN 9780367631857
June 1, 2021 Forthcoming by CRC Press
240 Pages 40 Color & 26 B/W Illustrations

USD $130.00

Prices & shipping based on shipping country


Preview

Book Description

Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems.

The book examines several classes of recommendation algorithms including:

  • Machine learning algorithms
  • Community detection algorithms
  • Filtering algorithms

Various efficient and robust product recommender systems using machine learning algorithm are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. The book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others.

Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include:

  • A latent-factor technique for model-based filtering systems
  • Collaborative filtering approaches
  • Content-based approaches

The book finally examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.

Table of Contents

Chapter 1. Collaborative Filtering Based Robust Recommender System Using Machine Learning Algorithms
Utkarsh Pravind, Palak Porwal, Abhaya Kumar Sahoo, and Chittaranjan Pradhan

Chapter 2. An Experimental Analysis of Community Detection Algorithms on a Temporally Evolving Data Set
B.S.A.S.Rajita, Mrinalini Shukla, Deepa Kumai, and Subhrakanta Panda

Chapter 3. Why-This Recommendation? Explainable Product Recommendations with Ontological Knowledge Reasoning
K. Vidya, Dr. Teja Santosh, and Dr.Sridevi Gutta

Chapter 4. Model-based Filtering Systems using a Latent-Factor Technique
Aleena Mishra, Mahendra Kumar Gourisaria, Palak Gupta, Sudhansu Shekhar Patra, and Lalbihari Barik

Chapter 5. Recommender Systems for the Social Networking Context for Collaborative Filtering and Content-Based Approaches
R S M Lakshmi Patibandla, V. Lakshman Narayana, Arepalli Peda Gopi, and B. Tarakeswara Rao

Chapter 6. Recommendation System for Risk Assessment in Requirements Engineering of Software with Tropos: A Goal-Risk Model
Dr. G. Ramesh, Dr. P. Dileep Kumar Reddy, and Dr. J. Somasekar

Chapter 7. A Comprehensive Overview to the Recommender System: Approaches, Algorithms, and Challenges
R.Bhuvanya and M.Kavitha

Chapter 8. Collaborative Filtering Techniques: Algorithms and Advancements
Pallavi Mishra

...
View More

Editor(s)

Biography

Dr. P. Pavan Kumar received a Ph.D. degree from JNTU, Anantapur, India. He is an Assistant Professor in the Department of Computer Science and Engineering at ICFAI Foundation for Higher Education (IFHE), Hyderabad. His research interests include real-time systems, multi-core systems, high-performance systems, computer vision.

Dr. S. Vairachilai earned a Ph.D. degree in Information Technology from Anna University, India. She is an Assistant Professor in the Department of CSE at ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana. Prior to this she served in teaching roles an Kalasalingam University and N.P.R College of Engineering and Technology, Tamilnadu, India. Her research interests include Machine Learning, Recommender System and Social Network Analysis.

Sirisha Potluri is an Assistant Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education, Hyderabad. She is pursuing a Ph.D. degree in the area of cloud computing. Her research areas include distributed computing, cloud computing, fog computing, recommender systems and IoT.

Dr. Sachi Nandan Mohanty received a Ph.D. degree from IIT Kharagpur, India. He is an Associate Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education Hyderabad. Prof. Mohanty’s research areas include data mining, big data analysis, cognitive science, fuzzy decision making, brain-computer interface, and computational intelligence.