Routledge Handbook of Sport and Exercise Systems Genetics  book cover
1st Edition

Routledge Handbook of Sport and Exercise Systems Genetics

ISBN 9781138504851
Published March 26, 2019 by Routledge
514 Pages

SAVE ~ $49.00
was $245.00
USD $196.00

Prices & shipping based on shipping country


Book Description

Technological advances over the last two decades have placed genetic research at the forefront of sport and exercise science. It provides potential answers to some of contemporary sport and exercise’s defining issues and throws up some of the area’s most challenging ethical questions, but to date, it has rested on a fragmented and disparate literature base. The Routledge Handbook of Sport and Exercise Systems Genetics constitutes the most authoritative and comprehensive reference in this critical area of study, consolidating knowledge and providing a framework for interpreting future research findings.

Taking an approach which covers single gene variations, through genomics, epigenetics, and proteomics, to environmental and dietary influences on genetic mechanisms, the book is divided into seven sections. It examines state-of-the-art genetic methods, applies its approach to physical activity, exercise endurance, muscle strength, and sports performance, and discusses the ethical considerations associated with genetic research in sport and exercise.

Made up of contributions from some of the world’s leading sport and exercise scientists and including chapters on important topical issues such as gene doping, gender testing, predicting sport performance and injury risk, and using genetic information to inform physical activity and health debates, the handbook is a vital addition to the sport and exercise literature. It is an important reference for any upper-level student, researcher, or practitioner working in the genetics of sport and exercise or exercise physiology, and crucial reading for any social scientist interested in the ethics of sport.

Table of Contents

Section 1: General Systems Genetics

1. Why Study the Systems Genetics of Sport and Exercise?

Frank W. Booth, Taylor J. Kelty, Kolter B. Grigsby, and Gregory N. Ruegsegger

2. Expansion of Knowledge and Advances in Genetics for Quantitative Analyses

Penny K. Riggs

3. Human Systems Genetic Modeling Used in Exercise

Jaako Kaprio

4. The Translation of Systems Genetics of Exercise to Everyday Life

Molly Bray

Section 2: Systems Genetics of Physical Activity

5. Is Physical Activity Regulated by Genetics? Evidence from Animal Models

Scott A. Kelly

6. Is Physical Activity Regulated by Genetics? Evidence from Studies in Humans

Matthijs D. van der Zee and Eco de Geus

7. The Evolution of Genetic Mechanisms Controlling Physical Activity

J. Timothy Lightfoot, Ayland C. Letsinger, and Jorge Z Granados

8. Neurogenetics of Motivation for Physical Activity

Justin S. Rhodes

9. Peripheral Mechanisms Arising from Genetics that Regulate Activity

David P. Ferguson

10. Toxicant and Dietary Exposures as Unique Environmental Factors that Affect the Genetic Regulation of Activity

Emily E. Schmitt and Heather L. Vellers

Section 3: Systems Genetics of Exercise Endurance and Trainability

11. The Evolution of the Human Endurance Phenotype

David A. Raichlen, James Webber, and Herman Pontzer

12. Endurance Phenotype Primer

John C. Quindry and Michael D. Roberts

13. Heritability of Endurance Traits from Animal Research Models

Joshua J. Avila, Sean M. Courtney, and Michael P. Massett

14. Heritability of Endurance Traits from Human Research Models

Jacob L. Barber and Mark A. Sarzynski

15. Genetic Contributions to Cardiorespiratory Fitness

Reuben Howden, Benjamin D.H. Gordon, and Ebony C. Gaillard

16. Genetic Contributions to Mitochondrial Traits

Mark Tarnopolsky

17. Angiotensin-Converting Enzyme and the Genomics of Endurance Performance

Linda S. Pescatello, Lauren M.L. Corso, Lucas P. Santos, Jill Livingston, and Beth A. Taylor

Section 4: Systems Genetics of Muscle Mass, Strength, and Trainability

18. Heritability of Muscle Size and Strength Traits

Martine Thomis

19. Genetic Contributions to Muscle Strength

Matthew D. Barberio, Emidio E. Pistilli, and Monica J. Hubal

20. Genetic Contributions to Skeletal Muscle Size

Philip J. Atherton, Jessica Cegielski, and Daniel J. Wilkinson

21. Genetic Contributions to Neuroendocrine Responses to Resistance Training

William J. Kraemer, Nicholas A. Ratamess, and Jakob L. Vingren

22. Myostatin’s Role in Genetic Control of Muscle Size and Strength

Dustin S. Hittel

23. Alpha-Actinin-3’s Role in the Genetic Control of Muscle Strength and Performance

Jane T. Seto, Fleur C. Garton, Kathryn N. North, and Peter J. Houweling

Section 5: Systems Genetics of Sports Performance

24. Summary Findings on Genetics and Sport Performance

Macsue Jacques, Shanie Landen, Sarah Voisin, and Nir Eynon

25. Using Elite Athletes as a Model for Genetic Research

Colin N. Moran, Alun G. Williams, and Guan Wang

26. Twin and Family Studies in Sport Performance

José Maia and Peter T. Katzmarzyk

27. Sport Concussion Genetics

Ryan T. Tierney and Jane K. McDevitt

28. Systems Genetic Factors Underlying Soft Tissue Injury

Masouda Rahim, Alison V. September, and Malcolm Collins

29. Sex and Performance: Nature Versus Nurture

Mindy Millard-Stafford and Matthew T. Wittbrodt

Section 6: The Ethics of Systems Genetics in Exercise and Sport

30. Race and Sports Performance

John Nauright and David K. Wiggins

31. The Scientific and Ethical Challenges of Using Genetic Information to Predict Sport Performance

Andrew C. Venezia and Stephen M. Roth

32. Gene Doping: Ethical Perspectives

Verner Møller and Rasmus Bysted Møller

33. Enhancing Evolution: The Transhuman Case For Gene Doping

Andy Miah

34. The Ethics of Sex Testing in Sport

Jaime Schultz

Section 7: Conclusions

35. Exercise Genomics, Epigenomics and Transcriptomics: A Reality Check!

Claude Bouchard

36. Afterword - Closing the Loop: Observations and Conclusions

J. Timothy Lightfoot, Monica J. Hubal, and Stephen M. Roth

View More



J. Timothy Lightfoot is the Omar Smith Endowed Chair in Kinesiology and the Director of the Sydney and JL Huffines Institute for Sports Medicine and Human Performance at Texas A&M University in College Station, Texas (USA), and holds the rank of Professor of joint appointments on the Texas A&M Genetics Faculty and the Texas A&M Institute for Genome Sciences and Society. His research focus has been the genetic factors that regulate daily physical activity. He is an Associate Editor of Medicine and Science in Sports and Exercise. He was a founding member of the National Exercise Clinical Trials Network and is a Fellow of the American College of Sports Medicine.

Monica J. Hubal is an Associate Professor of Kinesiology at Indiana University–Purdue University Indianapolis, USA. She is also an Adjunct Associate Professor of Cellular and Integrative Physiology, a research scientist in the Diabetes Translational Research Center and is affiliated with the Indiana Center for Musculoskeletal Health at the Indiana University School of Medicine. Her research focuses on understanding the systems biology of emergent cardiometabolic disease and the mechanisms driving response to various interventions. She was a principal investigator in the Research Center for Genetic Medicine at the Children’s National Medical Center. She is an Associate Editor for Medicine and Science in Sports and Exercise and Exercise and Sport Sciences Reviews and is a Fellow of the American College of Sports Medicine.

Stephen M. Roth is a Professor of Kinesiology and Associate Dean at the University of Maryland in College Park, USA. He has researched the genetic aspects of exercise and sport for over 15 years. He is an author or co-author of over 90 peer-reviewed articles, book chapters, and books. He served as an Associate Editor for Medicine and Science in Sports and Exercise and Exercise and Sport Sciences Reviews. He is a Fellow of the National Academy of Kinesiology and the American College of Sports Medicine.


"Recommended. Upper-division undergraduates through faculty and professionals." - Choice