1st Edition

Semiconductor Devices and Technologies for Future Ultra Low Power Electronics

Edited By D. Nirmal, J. Ajayan, Patrick J. Fay Copyright 2022
    302 Pages 165 B/W Illustrations
    by CRC Press

    This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided.


    • Discusses the latest updates in the field of ultra low power semiconductor transistors
    • Provides both experimental and analytical solutions for TFETs and NCFETs
    • Presents synthesis and fabrication processes for FinFETs
    • Reviews details on 2-D materials and 2-D transistors
    • Explores the application of FETs for biosensing in the healthcare field

    This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.

    CHAPTER-1: An Introduction to Nanoscale CMOS Technology Transistor: A Future Perspective
    Kumar Prasannajit. Pradhan

    CHAPTER-2: High Performance Tunnel Field Effect Transistor (TFET) for Future Low Power Applications
    Ribu Mathew, Ankur B, and Abhishek Kumar Upadhyay

    CHAPTER-3: Ultra Low Power III-V Tunnel Field Effect Transistors
    J. Ajayan and D. Nirmal

    CHAPTER-4: Performance Analysis of Carbon Nanotube and Graphene Tunnel Field Effect Transistors
    K. Ramkumar, Singh Rohitkumar Shailendra, V N Ramakrishnan

    CHAPTER-5: Characterization of Silicon FinFETS Under Nanoscale Dimensions
    Rock-Hyun Baek and Jun-Sik Yoon

    CHAPTER-6: Germenium or SiGe FinFETs for Enhanced Performance in Low Power Applications
    Nilesh Kumar Jaiswal and V. N. Ramakrishnan

    CHAPTER-7: Switching Performance Analysis of III-V FinFETs
    Arighna Basak, Arpan Deyasi, Kalyan Biswas, Angsuman Sarkar

    CHAPTER-8: Negative Capacitance Field Effect Transistors to Address the Fundamental Limitations In Technology Scaling
    Harsupreet Kaur

    CHAPTER-9: Recent Trends in Compact Modeling of Negative Capacitance Field Effect Transistors
    Shubham Tayal, Shiromani Balmukund Rahi,Jay Prakash Srivastava, Sandip Bhattacharya

    CHAPTER-10: Fundamentals of 2D Materials
    Ganesan Anushya, Rasu Ramachandran, Raj Sarika, Michael Benjamin

    CHAPTER-11: Two-Dimensional Transition Metal Dichalcogenide (TMD) Materials In Field Effect Transistor (FET) Devices For Low Power Applications
    R. Sridevi and J. Charles Pravin


    D. Nirmal is presently working as an Associate Professor and Head in the Department of Electronics and Communication engineering. His research interests includes Nanoelectronics, 1D/2D Materials, Carbon nanotubes, GaN Technology, Device and Circuit Simulation – GSL, Sensors,  Nanoscale device design and modelling.

    J. Ajayan is an Associate Professor in the Department of Electronics and Communication Engineering at SR University, Telangana, India. His areas of interest are microelectronics, semiconductor devices, nanotechnology, RF integrated circuits and photovoltaics.

    Patrick Fay is currently a Professor with the Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA. He established the High Speed Circuits and Devices Laboratory, Notre Dame, and oversaw the design, construction, and commissioning of the 9000-ft2 class 100 cleanroom housed in Stinson-Remick Hall at Notre Dame. He has served as the Director of this facility since 2003.