Set Theoretical Aspects of Real Analysis: 1st Edition (e-Book) book cover

Set Theoretical Aspects of Real Analysis

1st Edition

By Alexander B. Kharazishvili

Chapman and Hall/CRC

456 pages

Purchasing Options:$ = USD
Hardback: 9781482242010
pub: 2014-08-26
SAVE ~$33.00
eBook (VitalSource) : 9780429170577
pub: 2014-08-26
from $28.98

FREE Standard Shipping!


Set Theoretical Aspects of Real Analysis is built around a number of questions in real analysis and classical measure theory, which are of a set theoretic flavor. Accessible to graduate students, and researchers the beginning of the book presents introductory topics on real analysis and Lebesgue measure theory. These topics highlight the boundary b

Table of Contents

ZF theory and some point sets on the real line. Countable versions of AC and real analysis. Uncountable versions of AC and Lebesgue nonmeasurable sets. The Continuum Hypothesis and Lebesgue nonmeasurable sets. Measurability properties of sets and functions. Radon measures and nonmeasurable sets. Real-valued step functions with strange measurability properties. Relationships between certain classical constructions of Lebesgue nonmeasurable sets. Measurability properties of Vitali sets. A relationship between the measurability and continuity of real-valued functions. A relationship between absolutely nonmeasurable functions and Sierpinski-Zygmund functions. Sums of absolutely nonmeasurable injective functions. A large group of absolutely nonmeasurable additive functions. Additive properties of certain classes of pathological functions. Absolutely nonmeasurable homomorphisms of commutative groups. Measurable and nonmeasurable sets with homogeneous sections. A combinatorial problem on translation invariant extensions of the Lebesgue measure. Countable almost invariant partitions of G-spaces. Nonmeasurable unions of measure zero sections of plane sets. Measurability properties of well-orderings. Appendices. Bibliography. Subject Index.

Subject Categories

BISAC Subject Codes/Headings:
MATHEMATICS / Functional Analysis