1st Edition

Solved Problems in Classical Electrodynamics and Theory of Relativity

By Daniel Radu, Ioan Merches Copyright 2023
    540 Pages 207 B/W Illustrations
    by CRC Press

    540 Pages 207 B/W Illustrations
    by CRC Press

    This book is intended for undergraduate and graduate students in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects. It is an excellent study tool for those students who would like to work independently on more electrodynamics problems in order to deepen their understanding and problem solving skills.

    The book discusses main concepts and techniques related to Maxwell's equations, potentials and fields (including Liénard-Wiechert potentials), electromagnetic waves, and the interaction and dynamics of charged point particles. It also includes content on magnetohydrodynamics and plasma, radiation and antennas, special relativity, relativistic kinematics, relativistic dynamics and relativistic-covariant dynamics and general theory of relativity. It contains a wide range of problems, ranging from electrostatics and magnetostatics to the study of the stability of dynamical systems, field theories and black hole orbiting. The book even contains interdisciplinary problems from the fields of electronics, elementary particle theory, antenna design.

    Detailed, step-by step calculations are presented, meeting the need for a thorough understanding of the reasoning and steps of the calculations by all students, regardless of their level of training. Additionally, numerical solutions are also proposed and accompanied by adjacent graphical representations and even multiple methods of solving the same problem.

    It is structured in a coherent and unified way, having a deep didactic character, being thus oriented towards a university environment, where the transmission of knowledge in a logical, unified and coherent way is essential. It teaches students how to think about and how to approach solving electrodynamics problems.

    • Contains a wide range of problems and applications from the fields of electrodynamics and the theory of special relativity
    • Presents numerical solutions to problems involving nonlinearities
    • Details command lines specific to Mathematica software dedicated to both analytical and numerical calculations, which allows readers to obtain the numerical solutions as well as the related graphical representations.


    Chapter 1. Electrostatics

    Chapter 2. Magnetostatics

    Chapter 3. Energy of electrostatic and magnetostatic fields. Electromagnetic induction

    Chapter 4. Stationary and quasi-stationary currents

    Chapter 5. Liénard-Wiechert potentials. Electromagnetic waves

    Chapter 6. Motion of charged particles in the electromagnetic field - non-relativistic approach.

    Chapter 7. Magnetohydrodynamics. Plasma

    Chapter 8. Special Theory of Relativity. Relativistic kinematics

    Chapter 9. Relativistic dynamics

    Chapter 10. Relations of field transformations

    Chapter 11. Relativistic-covariant dynamics

    Chapter 12. General Theory of Relativity

    Appendix A. Elements of tensor calculus

    Appendix B. Tensors in the 3D Euclidean space

    Appendix C. Tensors in Minkowski space

    Appendix D. Curvilinear coordinates in the physical space

    Appendix E. Dirac’s delta distribution

    Appendix F. Green’s function


    Daniel Radu is a Lecturer in the Faculty of Physics, Al.I.Cuza University, Romania.

    Ioan Merches is Professor Emeritus in the Faculty of Physics, Al.I.Cuza University, Romania.