The Handbook of Data Mining  book cover
1st Edition

The Handbook of Data Mining

Edited By

Nong Ye

ISBN 9780805855630
Published November 19, 2004 by CRC Press
720 Pages

SAVE ~ $39.00
was $130.00
USD $91.00

Prices & shipping based on shipping country


Book Description

Created with the input of a distinguished International Board of the foremost authorities in data mining from academia and industry, The Handbook of Data Mining presents comprehensive coverage of data mining concepts and techniques. Algorithms, methodologies, management issues, and tools are all illustrated through engaging examples and real-world applications to ease understanding of the materials.

This book is organized into three parts. Part I presents various data mining methodologies, concepts, and available software tools for each methodology. Part II addresses various issues typically faced in the management of data mining projects and tips on how to maximize outcome utility. Part III features numerous real-world applications of these techniques in a variety of areas, including human performance, geospatial, bioinformatics, on- and off-line customer transaction activity, security-related computer audits, network traffic, text and image, and manufacturing quality.

This Handbook is ideal for researchers and developers who want to use data mining techniques to derive scientific inferences where extensive data is available in scattered reports and publications. It is also an excellent resource for graduate-level courses on data mining and decision and expert systems methodology.

Table of Contents

Contents: G. Salvendy, Foreword. N. Ye, Preface. Part I:Methodologies of Data Mining. J. Gehrke, Decision Trees. G.I. Webb, Association Rules. J. Si, B.J. Nelson, G.C. Runger, Artificial Neural Network Models for Data Mining. C.M. Borror, Statistical Analysis of Normal and Abnormal Data. D. Madigan, G. Ridgeway, Bayesian Data Analysis. S.L. Scott, Hidden Markov Processes and Sequential Pattern Mining. G. Ridgeway, Strategies and Methods for Prediction. D.W. Apley, Principal Components and Factor Analysis. E. Ip, I. Cadez, P. Smyth, Psychometric Methods of Latent Variable Modeling. J. Ghosh, Scalable Clustering. G. Das, D. Gunopulos, Time Series Similarity and Indexing. Y-C. Lai, Z. Liu, N. Ye, T. Yalcinkaya, Nonlinear Time Series Analysis. B-H. Park, H. Kargupta, Distributed Data Mining. Part II:Management of Data Mining. D. Pyle, Data Collection, Preparation, Quality, and Visualization. T. Wu, X. Li, Data Storage and Management. H. Liu, L. Yu, H. Motoda, Feature Extraction, Selection, and Construction. S.M. Weiss, T. Zhang, Performance Analysis and Evaluation. C. Clifton, Security and Privacy. R. Grossman, M. Hornick, G. Meyer, Emerging Standards and Interfaces. Part III:Applications of Data Mining. D.A. Nembhard, Mining Human Performance Data. R. Feldman, Mining Text Data. S. Shekhar, R.R. Vatsavai, Mining Geospatial Data. C. Kamath, Mining Science and Engineering Data. M.J. Zaki, Mining Data in Bioinformatics. R. Cooley, Mining Customer Relationship Management (CRM) Data. N. Ye, Mining Computer and Network Security Data. C. Djeraba, G. Fernandez, Mining Image Data. M.C. Testik, G.C. Runger, Mining Manufacturing Quality Data.

View More


"...a useful resource for anyone new to data mining, and for anyone wishing to discover what potential tools are available, as well as what might be achieved through the use of those tools...a good 'data-mining handbook' to have on one's shelves."
Short Book Reviews

"This handbook will be a valuable reference in the library of the human factors analyst with advanced statistical and analytic skills. The coverage is comprehensive and state-of-the-art by leading experts in data mining. The handbook is a tool kit to be consulted and referenced in the decision to conduct and plan a data-mining effort."
Ergonomics in Design

"This collection of essays contains chapters on many of the common techniques, problems, and applications associated with data mining....overall this book is an excellent reference for practitioners who need a practical introduction to topics in data mining."

Journal of the American Statistical Association