Topics in Galois Theory: 2nd Edition (Hardback) book cover

Topics in Galois Theory

2nd Edition

By Jean-Pierre Serre

A K Peters/CRC Press

120 pages

Purchasing Options:$ = USD
Hardback: 9781568814124
pub: 2007-11-02
SAVE ~$10.39
eBook (VitalSource) : 9780429064401
pub: 2016-04-19
from $24.98

FREE Standard Shipping!


This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are presented. The second half is devoted to rationality and rigidity criteria and their application in realizing certain groups as Galois groups of regular extensions of Q(T). While proofs are not carried out in full detail, the book contains a number of examples, exercises, and open problems.


" is a very stimulating text, which . . . will attract mathematicians working in group theory, number theory, algebraic geometry, and complex analysis.

Zentralblatt für Mathematik

This small book contains a nice introduction to some classical highlights and some recent work on the inverse Galois theory problem. The topics and main theorems are carefully chosen and composed in a masterly manner.

Mathematiacl Reviews -July 2007
""Serre had the great good sense to have notes taken at his 1988 lectures at Harvard, creating a slim volume of great interest…"" -BOOK NEWS Inc., June 2008
J.-P. Serre, one of the greatest mathematicians in our time, provides here a unique introduction to both some classical milestones and some recent developments in the realm of inverse Galois theory. … [This book] will maintain its unique, unparalleled role in the literature on inverse Galois theory for further generations. Now as before, J.-P. Serre's masterpiece of expository writing is an unvaluable source of inspiration and incitement likewise. -Werner Kleinert, Zentralblatt MATH, January 2007
""Serre’s book helped to call the attention to a deep classical problem with connections to algebraic geometry, topology, algebra, and number theory. By carefully selecting examples, methods and topics, this book goes deeply into the problem."" -MAA Reviews, September 2008"

About the Series

Research Notes in Mathematics

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
MATHEMATICS / Number Theory