
Variational Problems in Topology
The Geometry of Length, Area and Volume
Preview
Book Description
Many of the modern variational problems in topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clean explanation of some of these problems (both solved and unsolved), using current methods and analytical topology. The author's skillful exposition gives an unusual motivation to the theory expounded, and his work is recommended reading for specialists and nonspecialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.
Table of Contents
Preface, Chapter I. PRELIMINARIES, Chapter II. FUNCTIONS ON MANIFOLDS, Chapter III. MANIFOLDS OF SMALL DIMENSIONS, Chapter IV. MINIMAL SURFACES, References, Index
Author(s)
Biography
Professor Anatolii Fomenko was educated at Moscow State University. He earned his DSc in 1972, and in 1974 he won the Moscow Mathematical Society Award for his doctoral thesis. Professor Fomenko has obtained fundamental results in the fields of geometry, topology and multidimensional variational calculus, and is also a successful teacher and specialist in scientific methodology.