1st Edition

Xenopus From Basic Biology to Disease Models in the Genomic Era

Edited By Abraham Fainsod, Sally A. Moody Copyright 2022
    360 Pages 27 Color & 18 B/W Illustrations
    by CRC Press

    360 Pages 27 Color & 18 B/W Illustrations
    by CRC Press

    This book focuses on the amphibian, Xenopus, one of the most commonly used model animals in the biological sciences. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to our knowledge in cell biology, developmental biology, molecular biology, and neurobiology. In recent years, with the completion of the genome sequence of the main two species and the application of genome editing techniques, Xenopus has emerged as a powerful system to study fundamental disease mechanisms and test treatment possibilities. Xenopus has proven an essential vertebrate model system for understanding fundamental cell and developmental biological mechanisms, for applying fundamental knowledge to pathological processes, for deciphering the function of human disease genes, and for understanding genome evolution.

    Key Features

    • Provides historical context of the contributions of the model system
    • Includes contributions from an international team of leading scholars
    • Presents topics spanning cell biology, developmental biology, genomics, and disease model
    • Describes recent experimental advances
    • Incorporates richly illustrated diagrams and color images

    Related Titles

    Green, S. L. The Laboratory Xenopus sp. (ISBN 978-1-4200-9109-0)

    Faber, J. & P. D. Nieuwkoop. Normal Table of Xenopus laevis (Daudin): A Systematical & Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis (ISBN 978-0-8153-1896-5)

    Jarret, R. L. & K. McCluskey. The Biological Resources of Model Organisms (ISBN 978-1-0320-9095-5)

    The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

    Section I: Contributions to Cell, Developmental and Molecular Biology

    Chapter 1: A quick history of Xenopus: The humble batrachian
    John B. Wallingford

    Chapter 2: The study of cell division control and DNA replication in Xenopus egg extracts
    Allison M. Jevitt and Susannah Rankin

    Chapter 3: Maternal gene control of embryogenesis: germ cell determination and germ layer formation
    Douglas W. Houston

    Chapter 4: Signaling components in dorsal-ventral patterning and the Organizer in Xenopus
    Eddy M. De Robertis and Nydia Tejeda-Munoz

    Chapter 5: Signaling pathways in anterior-posterior patterning
    Chenbei Chang

    Chapter 6: Wnt signaling in tissue differentiation and morphogenesis
    Stefan Hoppler and Michael Kuhl

    Chapter 7: Multiple functions of Notch signaling during early embryogenesis
    Silvia L. Lopez

    Chapter 8: The development and evolution of the vertebrate neural crest: insights from Xenopus
    Joshua R. York and Carole LaBonne

    Chapter 9: The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels
    Ataulfo Martinez-Torres and Elizabeth Pereida-Jaramillo

    Section II: Systems Biology and the Genomic Era

    Chapter 10: The continuing evolution of the Xenopus genome
    Mariko Kondo and Masanori Taira

    Chapter 11: Dynamics of chromatin remodeling during Xenopus development
    Gert Jan C. Veenstra

    Chapter 12: Gene regulatory networks controlling Xenopus embryogenesis
    Ken W. Y. Cho and Ira L. Blitz

    Chapter 13: Development of high-resolution proteomic analyses in Xenopus
    Elizabeth Van Itallie and Leonid Peshkin

    Chapter 14: Advances in genome editing tools
    Marko E. Horb, Anita Abu-Daya, Marcin Wlizla, Anna Noble and Matt Guille

    Section III: From Basic Biological Insights to Human Disease

    Chapter 15: Formation of the left-right axis: insights from the Xenopus model
    Axel Schweickert and Tim Ott

    Chapter 16: Discovering the function of congenital heart disease genes
    Delfina P. Gonzalez and Mustafa K. Khokha

    Chapter 17: Craniofacial development and disorders: contributions of Xenopus
    Ashwin Lokapally and Hazel Sive

    Chapter 18: Modeling digestive and respiratory system development and disease in Xenopus
    Scott A. Rankin and Aaron M. Zorn

    Chapter 19: Functional neurobiology in Xenopus provides insights into health and disease
    Clayton Gordy, Michael Forsthofer, Parthena Soupiadou, Suzan Ozugur and Hans Straka

    Chapter 20: Leaping towards the understanding of spinal cord regeneration
    Paula Slater, Gabriela Edwards-Faret and Juan Larrain

    Chapter 21: Studying tumor formation and regulation in Xenopus
    Dieter Tulkens and Kris Vlemnickx

    Chapter 22: Xenopus: a model to study natural genetic variation and its disease implications
    Avi Leibovich, Sally A. Moody, Steven L. Klein and Abraham Fainsod

    Chapter 23: Using Xenopus to understand pluripotency and reprogram cells for therapeutic use
    Meghana S. Oak and Eva Hörmanseder

    Biography

    Sally A. Moody, Professor and Chair of Anatomy and Cell Biology at the George Washington University School of Medicine and Health Sciences, received her Ph.D. in Neuroscience during which she studied motor axon guidance cues in the trigeminal system of the chick embryo. Throughout her career, she has continued to be interested in understanding the mechanisms of axon guidance, and has studied the role of lineage factors in Xenopus, extracellular matrix proteins in chick, and genetic mutations in mouse. As a postdoctoral fellow, she was introduced to the Xenopus embryo, which remains a favorite. She made extensive fate maps of the cleavage stage Xenopus embryos, identified maternal mRNAs that contribute to neural fate, elucidated proteomic and metabolomic changes that occur within specific lineages during cleavage stages, and demonstrated lineage influences on the determination of amacrine cell fate in the retina. Currently, her laboratory is studying the gene regulatory network that stabilizes neural fate downstream of neural induction, and identifying novel factors that are required for cranial sensory placode development. She has served on several editorial boards in the fields of neuroscience and developmental biology, and on the board of directors of several societies focused on developmental processes.

    Abraham Fainsod, Professor of Biochemistry and Wolfson Family Professor of Genetics at the Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine of The Hebrew University of Jerusalem. During his undergraduate studies at Hebrew University, he studied the genetic basis of chromosomal aberrations in cells in culture and continued for his Ph.D. in Genetics on the cloning and initial characterization of one of the first mammalian cell cycle genes. During his post-doctoral studies at Yale University, he focused on the early characterization of the Hox genes in mouse embryos. His interest on the genetic regulation of vertebrate embryonic development continued in his laboratory at Hebrew University focusing on the cloning and characterization of novel homeobox genes in the chicken embryo and in particular the multiple regulatory roles of the caudal homeobox genes. During a sabbatical at UCLA, he was introduced to the Xenopus embryo by Eddy De Robertis and his team, and since then shifted to this experimental system. He has studied the caudal genes, BMP signaling, and the size variability and scaling of morphogen gradients in Xenopus embryos. More recently, he is studying the biochemical, molecular and genetic origins of the Fetal Alcohol Syndrome, showing that alcohol interferes with Vitamin A metabolism causing a reduction in retinoic acid signaling and the many developmental malformations characteristic of this syndrome. Born in Mexico City, he has served as Chair of the Institute for Medical Sciences, the Department of Cellular Biochemistry and Human Genetics, the Human Genetics Program, the Undergraduate Studies Teaching Committee, and Deputy Dean for Academic Affairs.