Microscale and Nanoscale Heat Transfer : Analysis, Design, and Application book cover
1st Edition

Microscale and Nanoscale Heat Transfer
Analysis, Design, and Application

ISBN 9781498736305
Published February 1, 2016 by CRC Press
505 Pages 21 Color & 252 B/W Illustrations

FREE Standard Shipping
USD $275.00

Prices & shipping based on shipping country


Book Description

Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications features contributions from prominent researchers in the field of micro- and nanoscale heat transfer and associated technologies and offers a complete understanding of thermal transport in nano-materials and devices. Nanofluids can be used as working fluids in thermal systems; the thermal conductivity of heat transfer fluids can be increased by adding nanoparticles in fluids. This book provides details of experimental and theoretical investigations made on nanofluids for use in the biomechanical and aerospace industries. It examines the use of nanofluids in improving heat transfer rates, covers the numerical approaches for computational fluid dynamics (CFD) simulation of nanofluids, and reviews the experimental results of commonly used nanofluids dispersed in both spherical and nonspherical nanoparticles. It also focuses on current and developing applications of microscale and nanoscale convective heat transfer.

In addition, the book covers a wide range of analysis that includes:

  • Solid–liquid interface phonon transfer at the molecular level
  • The validity of the continuum hypothesis and Fourier law in nanochannels
  • Conventional methods of using molecular dynamics (MD) for heat transport problems
  • The molecular dynamics approach to calculate interfacial thermal resistance (ITR)
  • A review of experimental results in the field of heat pipes and two-phase flows in thermosyphons
  • Microscale convective heat transfer with gaseous flow in ducts
  • The application of the lattice Boltzmann method for thermal microflows
  • A numerical method for resolving the problem of subcooled convective boiling flows in microchannel heat sinks
  • Two-phase boiling flow and condensation heat transfer in mini/micro channels, and more

Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications addresses the need for thermal packaging and management for use in cooling electronics and serves as a resource for researchers, academicians, engineers, and other professionals working in the area of heat transfer, microscale and nanoscale science and engineering, and related industries.

Table of Contents

Interface Resistance and Thermal Transport in Nano-Confined Liquids. Molecular Dynamics Simulations for Water-Metal Interfacial Thermal Resistance. Convective Heat Transfer Enhancement with Nanofluids: A State-of-the-Art Review. Heat Conduction in Nanofluids. Thermophysical Properties of Nanofluids. Stability of Nanofluids: Fundamentals, State-of-the-Art, and Potential Applications. Numerical Approaches for Convective Heat Transfer with Nanofluids. Heat Pipes and Nanotechnologies. Nanofluid Flow Simulation as the Flow through the Porous Media. Convective Heat Transfer with Gaseous Flow in Microducts. Numerical Simulation of Combined Microscale Effects on Convective Heat Transfer in Single-Phase Flows. Numerical and Experimental Studies of Liquid and Gas Flow and Heat Transfer in Microchannel and Nozzle. Analytical-Numerical Solutions for Conjugated Heat Transfer in Multistream Microsystems. Direct-Inverse Problem Analysis in the Thermal Characterization of Microsystems. Application of the Lattice Boltzmann Method (LBM) to Thermal Microflows. Heat and Fluid Flow of Gases in Porous Media with Micropores: Slip Flow Regime. Numerical Analysis of Subcooled Convective Boiling in Microchannels. Two-Phase Flow in Microchannels.

View More



Mourad Rebay is currently a professor at the University of Reims Champagne-Ardenne, France. Speciaizing in heat transfer and thermal engineering, Dr. Rebay has seved as Secretary General for the International Centre for Heat and Mass Transfer. Sadik Kakaç is a distinguished scientist and educator, and currently is a professor of mechanical engineering at TOBB University of Economics and Technology in Ankara, Turkey, and an Emeritus Professor at the University of Miami (Florida). Dr. Kakaç earned master’s degrees in mechanical engineering and nuclear engineering at the Massachusetts Institute of Technology, and a Ph.D. from the Victoria University of Manchester. In 2013 he was made an Honorary Member of ASME. Dr. Kakaç is the author of numerous successful books in the areas of heat transfer and thermal engineering.


"… better devised, more complete and more detailed than other books nowadays available on the subject. … proposed by experienced and internationally recognized researchers in the area. The major topics of the book, that is, micro-channels and nanofluids, are of great interest nowadays and are currently applied to several practical engineering problems in heat transfer. … of interest for graduate and senior undergraduate students, as well as for practicing engineers and researchers in the fields of heat transfer and fluid mechanics."
—Helcio R. B. Orlande, Department of Mechanical Engineering, DEM/PEM – Politécnica/COPPE, Federal University of Rio de Janeiro, Brazil