Nanomagnetism : An Interdisciplinary Approach book cover
1st Edition

An Interdisciplinary Approach

ISBN 9781439818466
Published April 13, 2022 by Chapman and Hall/CRC
436 Pages 301 B/W Illustrations

FREE Standard Shipping
USD $110.00

Prices & shipping based on shipping country


Book Description

Nanomagnetism: An Interdisciplinary Approach provides a core foundation for understanding magnetic quantum-size effects at the nanoscale and their many applications across the disciplines. This textbook will be a valuable guide for students in new interdisciplinary courses in nanomagnetism and magnetic nanomaterials, an area that has experienced immense growth in the last two decades due to advancements in sample preparation, nanopatterning techniques and magnetic measurement instrumentation.

The interdisciplinary nature of nanoscience also makes this book an ideal resource for scientists working in industrial laboratories and pharmaceutical and medical researchers looking to expand their understanding of the physics of magnetic probes.

Key Features

  • Discusses physical, chemical and nanotemplating synthesis techniques for the production of magnetic nanoparticles
  • Covers experimental techniques for the determination of the macroscopic and microscopic magnetization of nanoparticles
  • Discusses the role of nanomagnetism in high-density magnetic recording media, nanostructured permanent magnets, MRI imaging enhancement and magnetically guided drug delivery

Table of Contents



PART I: Fundamental Concepts in Magnetism and Magnetic Materials 

CHAPTER 1:  The Magnetic Field

1.1       Overview and Historical Background

1.2       The Magnetic Field of a Current Carrying Wire

1.3       Solenoids and Uniform Magnetic Fields

1.4       The Lorentz Force and Cyclotron Motion

1.5       Magnetic Force on a Current Carrying Wire

1.6       The Magnetic Dipole Moment

                        1.6.1    Torque Considerations in a Uniform Magnetic Field

                        1.6.2    Energy Considerations in a Uniform Magnetic Field

                        1.6.3    Force Considerations in a Nonuniform Magnetic Field

1.7       Time Varying Currents and Maxwell’s Equations

1.8       Energy Stored in a Magnetic Field


CHAPTER 2:  Diamagnetism and Paramagnetism

2.1       Langevin Diamagnetism

2.2       Orbital and Spin Angular Momentum

                        2.2.1    Concepts from Classical Mechanics

                        2.2.2    Concepts from Quantum Mechanics

2.3       Atomic Magnetic Moments

2.4       Bound Currents and the Auxiliary Field

2.5       Magnetic Susceptibility

2.6       The Curie Law

2.7       Langevin Paramagnetism

2.8       Quantum Theory of Paramagnetism

2.9       The Effect of Crystalline Fields


CHAPTER 3:  Long-Range Magnetic Order 

3.1       The Curie-Weiss Law and the Weiss Molecular Field

3.2       The Exchange Interaction

3.3       Direct Exchange

              3.3.1  Localized Moments and the Heisenberg Exchange Hamiltonian

              3.3.2  Itinerant Electron Theory of Ferromagnetism

              3.3.3  Antiferromagnetism

              3.3.4  Ferrimagnetism

3.4       Indirect Exchange

              3.4.1  Superexchange

              3.4.2  The RKKY Interaction

3.5       Magnetic Microstructure

              3.5.1  The Hysteresis Loop

              3.5.2  The Demagnetizing Field

              3.5.3  Magnetic Domains and Magnetic Domain Wall Formation

              3.5.4  Magnetocrystalline Anisotropy and Easy Axes of Magnetization

              3.5.5  Magnetostatic Energy and Shape Anisotropy

              3.5.6  Magnetostriction and Magnetoelastic Energy


CHAPTER 4:  Single Magnetic Domain Particles 

4.1       Critical Particle Size for Single Domain Behavior

4.2       Coercivity of Uniaxial Small Particles

4.3       Coherent Spin Rotation of Stoner and Wohlfarth Particles

4.4       Non-coherent Spin Rotation Modes

4.5       Size Dependence of Coercivity

4.6       Superparamagnetism

4.7       Collective Magnetic Excitations

4.8       Interparticle Interactions

4.9       Finite-Size Effects and Characteristic Length Scales

4.10     Surface Anisotropy

4.11     Core/Shell Nanostructures

4.12     Exchange Anisotropy

4.13     Magnetic Dimensionality


PART II:  Production of Magnetic Nanoparticles 

CHAPTER 5:  Top-down Synthesis by Physical Methods

5.1       Particle Nucleation and Growth

                        5.1.1 Homogeneous Nucleation

                        5.1.2 Heterogeneous Nucleation

5.2       Gas-Phase Synthesis of Magnetic Nanoparticles

                        5.2.1 Synthesis of Bare 3d-transition Metal Clusters by Pulsed Laser Ablation

                        5.2.2 Synthesis of Ferromagnetic Nanoparticles by Vaporization-Deposition Techniques

5.3       Synthesis of Magnetic Nanoparticles by High Energy Ball Milling


CHAPTER 6: Bottom-up Synthesis by Chemical Methods          

6.1       Particle Nucleation and Growth in Solution

6.2       Cluster Stabilization by Terminal Ligation

6.3       Particle Stabilization by Surfactant Molecules

6.4       Production of Metal Particles by Chemical Reduction of Metal Salts

6.5       Preparation of Metal and Metal Alloy Nanoparticles in Polyol Media

6.6       Preparation of Monodispersed Magnetic Nanoparticles Using Microemulsions

6.7       Synthesis of Metallic Nanoparticles in Inverse Micelles

6.8       Preparation of Iron Nanoparticles by the Thermal Decomposition of Iron Pentacarbonyl

                        6.8.1 Thermolytic Decomposition of Fe(CO)5

                        6.8.2 Sonochemical Decomposition of Fe(CO)5

6.9       Synthesis of Iron Oxide and Ferrite Magnetic Nanoparticles

                        6.9.1 Co-precipitation Reactions

                        6.9.2 Controlled Oxidation of Metal Iron Particles


CHAPTER 7: Biogenic Magnetic Nanoparticles

7.1       Biomineralization of Iron

7.2       Formation of Magnetic Nanoparticles by Bacteria  

                        7.2.1 Physico-chemical Control of Fe3O4 Crystal Growth within Magnetosomes

7.3       Crystalline and Magnetic Properties of Magnetosomes Compared to Synthetic Magnetite Particles

7.4       Ferritin and its Dual Function in Biological Iron Regulation

                        7.4.1 Structure of the Ferritin Molecule

                        7.4.2 Nature of the Ferrihydrite Core

                        7.4.3 Recombinant HuHF and the Role of the Ferroxidase Center

7.5       Magnetic Properties of Ferritin


CHAPTER 8:  Biomimetic Magnetic Nanoparticles

8.1       Electrostatic Interactions in Ferritin

8.2       Magnetoferritin: Fe3O4 / γ-Fe2O3 Grown within Apoferritin

                        8.2.1 Magnetic Properties of Magnetoferritin vs. Ferritin

                        8.2.2 Beyond Iron Oxides

                        8.2.3 Metal and Metal-Alloy Magnetic Nanoparticles

8.3       Exploring the Ferritin Superfamily

8.4       Other Protein Cages and Viral Capsids as Constrained Reaction Vehicles

8.5       Phage Display Technologies Applied to Magnetic Nanoparticle Synthesis

8.6       Future Promise and Prospects of Biomimetic Synthesis


PART III:  Magnetometry 

CHAPTER 9: Macromagnetic vs. Micromagnetic Characterization

9.1       Force Methods

                        9.1.1 The Faraday Balance

                        9.1.2 The Gouy Balance

                        9.1.3 The Alternating Field Gradient Magnetometer

9.2       Induction Methods

                        9.2.1 The Vibrating Sample Magnetometer

                        9.2.2 The SQUID Magnetometer

                        9.2.3 The AC Susceptometer

9.3       Magnetic Resonance Methods

                        9.3.1 Principal Components of EPR/FMR Spectrometers

                        9.3.2 EPR Spectroscopy

                        9.3.3 FMR Spectroscopy

                        9.3.4 Mössbauer Spectroscopy


PART IV: Applications across the Disciplines 

CHAPTER 10:  Magnetic Recording Media

10.1     The Principles of Magnetic Recording

10.2     Particulate Magnetic Recording Media

10.3     Granular Magnetic Recording Media

10.4     The Transition from Parallel to Perpendicular Magnetic Recording Media

10.5     Bit Patterned Magnetic Recording Media

10.6     GMR, TMR and the Dawn of Spintronics


CHAPTER 11: Permanent Magnets 

11.1     Introduction to Permanent Magnetism  

11.2     Maximum Energy Product

11.3     Evolution of Permanent Magnet Materials

                        11.3.1 Steel Based Magnets

                        11.3.2 Alnico Magnets

                        11.3.3 Ferrite Magnets

                        11.3.4 Rare-earth Based Magnets

11.4     Future Permanent Magnet Materials

                        11.4.1 Exchange-coupled Hard/Soft Magnetic Phases: the Exchange-Spring Magnet

                        11.4.2 Magnetization Reversal in Exchange-Spring Magnets


CHAPTER 12:  Biomedical Applications of Nanomagnetism 

12.1     Biocompatibility and Functionalization of Magnetic Nanoparticles

12.2     In Vitro Applications

                        12.2.1 Magnetic Separation

                        12.2.2 Theoretical Considerations

                        12.2.3 Continuous Flow and Microfluidic Magnetic Separators

12.3     In Vivo Applications

                        12.3.1 Avoiding the Mononuclear Phagocytic System

                        12.3.2 Magnetically guided drug delivery

                        12.3.3 Cell-Receptor Recognition Targeted Drug Delivery

12.4     Magnetofection

12.5     Magnetic Fluid Hyperthermia

                        12.5.1 General Thermodynamic Considerations

                        12.5.2 Magnetic Thermodynamic Parameters

                        12.5.3 Response of a Ferrofluid to an Alternating Magnetic Field

                        12.5.4 Relaxation Times

12.6     Magnetic Fluid Hyperthermia for Cancer Therapy

12.7     Magnetic Resonance Imaging Contrast Agents

                        12.7.1 Principles of Magnetic Resonance Imaging

                        12.7.2 Mode of Action of Superparamagnetic Contrast Agents

                        12.7.3 Relaxivity of contrast agents




View More



Georgia C. Papaefthymiou, a graduate of Columbia University in the City of New York, is Professor of Physics at Villanova University, Villanova, Pennsylvania, and visiting research scientist at the National Center for Scientific Research (NCSR) Demokritos, Athens, Greece. She is the recipient of the Marie Curie Chair of Excellence award from the European Union, the CAPES award from the Ministry of Education of Brazil and the Fulbright Scholar award from the Department of State of the United States.