Spin Wave Confinement : Propagating Waves, Second Edition book cover
2nd Edition

Spin Wave Confinement
Propagating Waves, Second Edition

ISBN 9789814774352
Published August 7, 2017 by Jenny Stanford Publishing
448 Pages 33 Color & 116 B/W Illustrations

FREE Standard Shipping
USD $179.95

Prices & shipping based on shipping country


Book Description

Since the publication of the first edition of Spin-Wave Confinement, the magnetic community’s interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied.

The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities.

Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.

Table of Contents

Graded Magnonic Index And Spin-Wave Fano Resonances

V. V. Kruglyak, C. S. Davies, Y. Au, F. B. Mushenok, G. Hrkac, N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, V. D. Poimanov, R. Dost, D. A. Allwood, B. J. Inkson, and A. N. Kuchko

Coupled Spin Waves In Magnonic Waveguides

SharaevskyYu.P., Sadovnikov A.V., Beginin E.N., Morozova M.A., Sheshukova S.E., Sharaevskaya A. Yu., Grishin S.V., Romanenko D.V. and Nikitov S.A

Tuning Of The Spin-Wave Bands In Nanostructures

G. Gubbiotti, S. Tacchi, R. Silvani, M. Madami and G. Carlotti, A. O. Adeyeye, and M. Kostylev

Magnetization Dynamics Of Reconfigurable 2d Magnonic Crystals

G. Shimon, A. Haldar, and A. O. Adeyeye

Spin-Wave Optics In Patterned Garnet

Ryszard Gieniusz1, Andrzej Maziewski, Urszula Guzowska, Paweł Gruszecki, Jarosław Kłos, Maciej Krawczyk, and Alexander Stognij

Spin Waves In Circular And Linear Chains Of Discrete Magnetic Elements

Barabanenkov Yu.N., Osokin S.A., Kalyabin D.V. and Nikitov S.A.

Magnonic Grating Coupler Effect And Microwave-To-Magnon Transducers For Exchange-Dominated Spin Waves

Haiming Yu and Dirk Grundler

Spin Waves On Spin Structures: Topology, Localization, And Nonreciprocity

Robert L. Stamps, Joo-Von Kim, Felipe Garcia-Sanchez, Pablo Borys, Gianluca Gubbiotti, Yue Li, and Robert E. Camley

Steering Of Confined Spin Waves By Local Magnetic Fields And Domain Walls

Katrin Schultheiss, Kai Wagner, Attila Kákay, Helmut Schultheiss

Current-Induced Spin-Wave Doppler Shift

Matthieu Bailleul and Jean-Yves Chauleau

Excitation And Amplification Of Propagating Spin Waves By Spin Currents

V.E. Demidov and S.O. Demokritov

Propagating Spin Waves In Nano-Contact Spin Torque Oscillators

Randy K. Dumas, Afshin Houshang, and Johan Åkerman

Parametric Excitation and Amplification of Spin Waves in Ultrathin Ferromagnetic Nanowires by Microwave Electric Field

Roman Verba, Mario Carpentieri, Giovanni Finocchio, Vasil Tiberkevich, and Andrei Slavin

View More



Sergej O. Demokritov is a leading expert in the field of spin-wave control and excitation using spintronic and magnonic concepts. His main scientific interests lie in the dynamics of magnetic nanosystems, quantum thermodynamics, magnetic memory, sensorics, and high-frequency signal processing. He received his PhD from the Kapitsa Institute for Physical Problems, Moscow. After postdoctoral research at the Jülich Research Center, Germany, with Prof. P. Grünberg (Nobel Prize in Physics, 2007), he established his own group at the University of Münster, Germany, in 2004. Prof. Demokritov is known for his discovery in 2006 of Bose–Einstein condensation of magnons at room temperature and his recent work on spin-wave control by spin currents. Since 2014, he is head of the Quantum Spintronics lab in Yekaterinburg, Russia.