1st Edition

Engineering Thermodynamics
Fundamental and Advanced Topics



  • Available for pre-order. Item will ship after December 11, 2020
ISBN 9780367646288
December 11, 2020 Forthcoming by CRC Press
512 Pages 209 B/W Illustrations

USD $160.00

Prices & shipping based on shipping country


Preview

Book Description

This textbook comprehensively covers fundamentals and advanced concepts of thermodynamics in a single volume.

It provides detailed discussion of advanced concepts including energy efficiency, energy sustainability, energy security, organic Rankine cycle (ORC), combined cycle power plant (CCPP), combined cycle power plant integrated with organic Rankine cycle and absorption refrigeration system, integrated coal gasification combined cycle (IGCC) power plants, energy conservation in domestic refrigerators and next generation Low-GWP (Global Warming Potential) refrigerants. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding.

The textbook is primarily written for senior undergraduate and graduate students in the field of mechanical engineering, civil engineering and aerospace engineering for courses on engineering thermodynamics/thermodynamics. The textbook will be accompanied by teaching resource including solution manual for the instructors. This book:

  • Provides design and experimental problems for better understanding.
  • Discusses comprehensively power cycles and refrigeration cycles and their advancements.
  • Explores design of energy efficient buildings to reduce the energy consumption.

Table of Contents

CHAPTER 1
INTRODUCTION AND BASIC CONCEPTS                   
1.1 Introduction to Thermodynamics
1.2 Thermodynamic Systems  
1.3 Thermodynamic Properties
1.4 State, Processes and Cycles 
          1.5 Homogeneous and Heterogeneous Systems
1.6 Thermodynamic Equilibrium 
1.7 Specific volume and Density  
1.8 Pressure 
1.9 Pressure Measuring Devices  
      Example Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 2  
TEMPERATURE: ZEROTH LAW OF THERMODYNAMICS          
2.1 Temperature
2.2 Zeroth Law of Thermodynamics   
          2.3 Thermometers-Temperature Measurement
         
          2.3.1 Reference Points
         2.3.2 Liquid-in Glass Tube Thermometer
          2.3.3 Gas Thermometers
          2.3.4 Electrical Resistance Thermometer
          2.3.5 Thermocouple 
                     2.4 Temperature Scale   
  2.4.1 Ideal Gas Temperature Scale
2.4.2 International Temperature Scale 
        Example Problems  
      Review Questions   
      Exercise Problems  
 CHAPTER 3
 ENERGY AND FIRST LAW OF THERMODYNAMICS    
          3.1 Energy Analysis  
          3.2 Different Forms of Stored Energy
3.3 Point Function and Path Function
          3.4 Heat Transfer 
                     3.5 Work Transfer  
                     3.6 Different Forms of Work  
          3.7 Relation between Heat and Work
                     3.8 First Law of Thermodynamics  
                     3.9 Moving Boundary Work  
          3.10 Energy Analysis of Closed Systems
          3.10.1 First Law for a Close System Undergoing a Cycle
           3.10.2 First Law for a Closed System Undergoing a Change of State
          3.11 Specific Heat and Latent Heat  
                     3.12 Internal Energy, Enthalpy and Specific Heats of Ideal Gases  
          3.13 Perpetual Motion Machine of the First Kind—PMM1
         3.14 Energy Efficiency
                3.14.1 Energy Conversion Efficiency
         3.14.2 Energy Efficient Buildings
         3.14.3 Cost-Effectiveness of Reflective White Materials
         3.14.4 Energy Efficient Motors
         3.14.5 Energy-Efficient Compressors
         3.15 Energy Sustainability
         3.16 Energy Security
         3.17 Energy Conservation
                     Example Problems  
       Review Questions     
      Exercise Problems  
CHAPTER 4
 PROPERTIES OF PURE SUBSTANCES
                    4.1 Pure Substances - Its Phases
                    4.2 Phase Change Processes of Pure Substances
         4.3 P-v Diagram of Pure Substances
                    4.4 T-v Diagram of Pure Substances
         4.5 P-T Diagram of Pure Substances
         4.6 p-V-T Surface
                    4.7 T-s Diagram of Pure Substances
                    4.8 h-s Diagram or Mollier Diagram
                    4.9 Quality or Dryness Fraction - Property Tables
         4.9.1 Quality or Dryers Fraction
         4.9.2 Compressed liquid
         4.9.3 Superheated Vapor
                 Example  Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 5
 FIRST LAW ANALYSIS OF CONTROL VOLUMES             
                    5.1 Control Volume   
         5.2 Conservation of Mass   
         5.3 Flow Work       
                    5.4 Steady Flow Processes   
                    5.5 First Law Analysis of Steady Flow Processes
         5.6 Steady Flow Energy Equation Needs
         5.7 Steady Flow Devices
        5.7.1 Turbines and Compressors
         5.7.2 Nozzles and Diffusers
         5.7.3 Throttling
         5.7.4 Heat Transfer
                    5.8 First Law Analysis of Unsteady Flow Processes
                            Example Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 6
 SECOND LAW OF THERMODYNAMICS
         6.1 Limitations of First Law of Thermodynamics
                    6.2 Second Law Statements
         6.2.1 Kelvin Planck Statement
  6.2.2 Clausius Statement
  6.2.3 Equivalence of Kelvin Planck and Clausius Statements
                    6.3 Reversible and Irreversible Processes
         6.4 Second Law Application to Power Cycles
         6.4.1 Thermal Efficiency of Power Cycles
         6.4.2 Corollaries of the Second Law for Power Cycles
  6.5 Second Law Application to Refrigeration and Heat Pump Cycles
  6.5.1 Refrigeration Cycles
  6.5.2 Heat Pump Cycles
  6.5.3 Energy efficiency ratio(EER) and seasonal energy efficiency ratio(SEER)
         6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles
  6.6 Thermodynamic Temperature Scale 
  6.7 Carnot Cycle
  6.7.1 The Carnot Power Cycle
  6.7.2 The Carnot Refrigerator and Heat Pump Cycles
                            Example Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 7
 ENTROPY
                    7.1 Inequality of Clausius
                    7.2 Entropy- a Property of a System
         7.3 Principle of Entropy
                    7.4 The Concept of Entropy
                    7.5 The TDS Equations
         7.6 Entropy Change of Pure Substances
                    7.7 Entropy Change of an Ideal Gas
                    7.8 Entropy Change of Solids and Liquids
                    7.9 Entropy Balance
         7.9.1 Entropy Change of a System
                    7.9.2 Entropy transfer by heat and mass transfer
         7.9.3 Entropy Generation- Closed System and Control Volume
                 7.10 Isentropic Process
                    7.11 Isentropic Efficiency
         7.11.1 Isentropic Efficiency of a Turbine

         7.11.2 Isentropic Efficiency of a Compressor and Pump
       
         7.11.3 Isentropic Efficiency of a Nozzle
   
       Example Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 8
 PROPERTIES OF GASES AND GAS MIXTURES
                    8.1 Ideal Gas Equation of State
                    8.2 Other Equations of State
                    8.3 Compressibility Factor-The Deviation of Real Gases from Ideal Gas          Behavior
                    8.4 Gas Compression-Reducing the Work of Compression
                    8.5 Properties of Gas Mixtures
                    8.6 Internal Energy, Enthalpy and Specific heats of Gas Mixtures
                    8.7 Entropy of Gas Mixtures
                           Example Problems  
     Review Questions  
     Exercise Problems  
CHAPTER 9
 CONCEPT OF AVAILABLE ENERGY (EXERGY)
                    9.1 Available Energy (Exergy)
                    9.2 Reversible Work and Irreversibility
         9.2.1 Useful work
         9.2.2 Reversible Work
         9.2.3 Irreversibility
                    9.3 Exergy Change of a System
        9.3.1 Exergy of a flow stream (open system) exchanging heat only with         surroundings
         9.3.2 Exergy of Non-flowing Fluid (Closed Systems)
                    9.4 Exergy Transfer by Heat, Work and Mass
                    9.5 Second-law Efficiency
                    9.6 Exergy Destruction
                    9.7 Exergy Balance
                           Example Problems  
      Review Questions   
      Exercise Problems  
   
CHAPTER10
 VAPOR AND ADVANCED POWER CYCLES
                    10.1 Carnot Vapor Cycle
                    10.2 Rankine Cycle
                    10.3 Comparison of Rankine and Carnot Cycles
         10.4 Mean Temperature of Heat Addition
                    10.5 Efficiency Improvement of Rankine Cycle   
                    10.6 Reheat Rankine Cycle
                    10.7 Regenerative Rankine Cycle
                    10.8 Ideal Working Fluids for Vapor Cycles
                    10.9 Binary Vapor Cycles
                   10.10 Organic Rankine Cycle (ORC)
        10.10.1 Efficiency of the Cycle       
     
        10.10.2 The ideal working fluids for the combined ORC
   
          10.11 Co-generation
        10.12 Exergy Analysis of Vapor Power Cycles
          10.13 Combined Cycle Power Plants   
         10.13.1 The Effect of Operating Parameters on Combined Cycle Performance
         10.13.2 Combined Cycle Power Plant Integrated with Organic Rankine Cycle   
10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System
         10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants
        10.14.1 Working of IGCC Power plant
         10.14.2 Carbon Dioxide Capture from IGCC Power Plant
         10.15 Power Cycles for Nuclear Plants
        10.15.1 Nuclear Power Plant
            10.15.2 Nuclear Fuels
                            Example Problems  
      Review Questions   
      Exercise Problems  
CHAPTER 11
 GAS POWER CYCLES
         11.1 General Analysis of Cycles
               11.2 Carnot Cycle
         11.3 Air-standard Cycles-Assumptions
         11.4 Reciprocating Engines-An Overview
         11.5 Otto Cycle
         11.6 Diesel Cycle
         11.7 Dual Cycle
         11.8 Comparison of Otto, Diesel and Dual Cycles
       11.8.1 Based on same compression ratio and heat rejection
       11.8.2 Based on same maximum pressure and temperature
         11.9 Stirling Cycle and Ericsson Cycle
          11.10 Brayton Cycle-Gas Turbine Power Plants
                    11.11 Brayton Cycle with Regeneration 
        11.12 Brayton Cycle with Intercooling, Reheating and Regeneration 
                   11.12.1 Brayton Cycle with Intercooling
                   11.12.2 Brayton Cycle with Reheating
        11.12.3 Brayton Cycle with Intercooling, Reheating and Regeneration
        11.13 Gas Turbines for Jet Propulsion 
       11.13.1 Rocket Engine
       11.13.2 Compressors used in jet engines
        10.14 Exergy Analysis of Gas Power Cycles
        11.15 New Combustion Systems for Gas Turbines
               11.15.1 Trapped vortex combustion (TVC)
       11.15.2 Rich burn, quick- mix, lean burn (RQL)
       11.15.3 Double Annular Combustor (DAC)
       11.15.4 Axially staged combustors (ASC)
       11.15.5 Twin Annular Premixing Swirler combustors (TAPS)
       11.15.6 Lean Direct Injection (LDI)
       Example Problems  
       Review Questions   
       Exercise Problems  
CHAPTER 12
 REFRIGERATION CYCLES
         12.1 Reversed Carnot Cycle
         12.2 Refrigerators and Heat pumps
         12.3 Vapor Compression Refrigeration Cycle
         12.3.1 COP of Vapor Compression Refrigeration Cycle
         12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle
         12.4 Refrigerants
         12.4.1 Low Global Warming Potential (Low GWP) Refrigerants 
         12.4.2 Current Low-GWP Refrigerant Options
         12.5 Vapor Absorption Refrigeration Cycle
         12.6 Gas Cycle Refrigeration
        12.7 Innovative Vapor Compression Refrigeration Systems
         12.7.1 Multi-stage Vapor Compression Refrigeration Systems
         12.7.2 Cascade Refrigeration System
       
        12.7.3 Liquefaction of Gases
       
         12.8 Energy Conservation in Domestic Refrigerators
   
                    12.8.1 Effect of Room Temperature on Energy Consumption
        12.8.2 Effect of Thermal Load on Energy Consumption
        12.8.3 Effect of Cooling of Compressor Shell with the Defrost Drips
      Example Problems  
        Review Questions   
        Exercise Problems 
CHAPTER 13   
THERMODYNAMIC RELATIONS
  13.1 Important Mathematical Relations
  13.2 The Maxwell Relations
  13.3 Clausius-Clapeyron Equation
  13.4 The Joule-Thomson Coefficient
  13.5 General Relations for Changes in Enthalpy, Internal Energy and            Entropy
  13.5.1 Change in Enthalpy
  13.5.2 Change in Internal Energy
  13.5.3 Change in Entropy
  13.6 Specific Heat Relations
         Example Problems  
        Review Questions   
        Exercise Problems 
CHAPTER 14   
PSYCHROMETRY
            14.1 Properties of Dry Air and Water Vapor
  14.1.1Specific Humidity and Relative Humidity 
  14.1.2 Dew-Point Temperature
  14.1.3 Wet-Bulb and Dry-Bulb Temperatures
  14.2 Adiabatic Saturation Process
  14.3 The Psychrometric Chart
  14.4 Air-Conditioning Processes
  14.4.1Sensible Heating and Cooling
  14.4.2 Heating with Humidification
  14.4.3 Cooling with Dehumidification
  14.4.4 Evaporative Cooling
  14.4.5 Adiabatic Mixing of Airstreams
                  Example Problems  
        Review Questions   
        Exercise Problems 
CHAPTER 15 
CHEMICAL POTENTIAL OF IDEAL FERMI AND BOSE GASES
  15.1 Introduction
15.2 Chemical Potential and Fugacity
  15.3 Chemical potential and thermal radiation
15.4 The properties of ideal Fermi-Dirac and Bose-Einstein gases
  15.5 Bose and Fermi Fugacity
  15.6 Low-Temperature Behavior of Physical Systems
  15.6.1 Fermi Low-Temperature Expansions
15.6.2 Bose Low-Temperature Expansions
CHAPTER 16 
IRREVERSIBLE THERMODYNAMICS
16.1 New Concepts Based on Second Law of thermodynamics
16.2 An Overview of Equilibrium and Non-Equilibrium Thermodynamics
16.3 Local Equilibrium Thermodynamics
16.4 Coupled Phenomena
16.5 Onsager's Reciprocal Relations
16.6 Entropy and Entropy Production
16.7 Linear Phenomenological Equations
16.8 Thermoelectric Phenomena
16.8.1 Seebeck effect
16.8.2 Peltier effect
16.8.3 Joule effect
16.8.4 Kelvin effect
16.9 Thermodynamic Forces and Thermodynamic Velocities
16.10 Stationary states, Fluctuations and Stability

REFERENCES

...
View More

Author(s)

Biography

K. Venkateswarlu is currently working as a Professor of Mechanical Engineering at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India. His research interests include fuel efficiency improvement of diesel engines, simulation of fuel spray and combustion with the effect of turbulence and multiple injections. He has 4 years of industrial experience and 18 years of teaching and research experience. He has published more than 15 papers in national and international journals and conferences of repute. He is a Fellow, Institution of Engineers India (FIE) and Life Member, Combustion Institute Indian Section.