3rd Edition

Liquid-Vapor Phase-Change Phenomena An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition

By Van P. Carey Copyright 2020
    730 Pages 294 B/W Illustrations
    by CRC Press

    Since the second edition of Liquid-Vapor Phase-Change Phenomena was written, research has substantially enhanced the understanding of the effects of nanostructured surfaces, effects of microchannel and nanochannel geometries, and effects of extreme wetting on liquid-vapor phase-change processes. To cover advances in these areas, the new third edition includes significant new coverage of microchannels and nanostructures, and numerous other updates. More worked examples and numerous new problems have been added, and a complete solution manual and electronic figures for classroom projection will be available for qualified adopting professors.

    Preface

    Nomenclature

    Introductory Remarks

    PART 1: THERMODYNAMIC AND MECHANICAL ASPECTS

    OF INTERFACIAL PHENOMENA AND PHASE TRANSITIONS

    1 The Liquid-Vapor Interfacial Region – A Nanoscale Perspective

    1.1 A Molecular Perspective on Liquid-Vapor Transitions

    1.2 The Interfacial Region – Molecular Theories of Capillarity

    1.3 Nanoscale Features of the Interfacial Region

    1.4 Molecular Dynamic Simulation Studies of Interfacial Region Thermophysics

    References

    Problems

    2 The Liquid-Vapor Interface – A Macroscopic Treatment

    2.1 Thermodynamic Analysis of Interfacial Tension Effects

    2.2 Determination of Interface Shapes at Equilibrium

    2.3 Temperature and Surfactant Effects on Interfacial Tension

    2.4 Surface Tension in Mixtures

    2.5 Near Critical Point Behavior

    2.6 Effects of Interfacial Tension Gradients

    References

    Problems

    3 Wetting Phenomena and Contact Angles

    3.1 Equilibrium Contact Angles on Smooth Surfaces

    3.2 Wettability, Cohesion, and Adhesion

    3.3 The Effect of Liquid Surface Tension on Contact Angle

    3.4 Adsorption and Spread Thin Films

    3.5 Contact-Angle Hysteresis

    3.6 Other Metrics for Wettability

    3.7 A Nanoscale View of Wettability

    3.8 Wetting of Microstructured and Nanostructured Surfaces

    References

    Problems

    4 Transport Effects and Dynamic Behavior of Interfaces

    4.1 Transport Boundary Conditions

    4.2 Kelvin-Helmholtz and Rayleigh-Taylor Instabilities

    4.3 Interface Stability of Liquid Jets

    4.4 Waves on Liquid Films

    4.5 Interfacial Resistance in Vaporization and Condensation Processes

    4.6 Maximum Flux Limitations

    References

    Problems

     

     

    5 Phase Stability and Homogeneous Nucleation

    5.1 Metastable States and Phase Stability

    5.2 Thermodynamic Aspects of Homogeneous Nucleation in Superheated Liquid

    5.3 The Kinetic Limit of Superheat

    5.4 Comparison of Theoretical and Measured Superheat Limits

    5.5 Thermodynamic Aspects of Homogeneous Nucleation in Supercooled Vapor

    5.6 The Kinetic Limit of Supersaturation

    5.7 Wall Interaction Effects on Homogeneous Nucleation

    References

    Problems

    PART 2: BOILING AND CONDENSATION NEAR IMMERSED BODIES

    6 Heterogeneous Nucleation and Bubble Growth in Liquids

    6.1 Heterogeneous Nucleation at a Smooth Interface

    6.2 Nucleation from Entrapped Gas or Vapor in Cavities

    6.3 Criteria for the Onset of Nucleate Boiling

    6.4 Bubble Growth in an Extensive Liquid Pool

    6.5 Bubble Growth Near Heated Surfaces

    6.6 Bubble Departure Diameter and the Frequency of Bubble Release

    References

    Problems

    7 Pool Boiling

    7.1 Regimes of Pool Boiling

    7.2 Mechanisms and Models of Transport During Nucleate Boiling

    7.3 Correlation of Nucleate Boiling Heat Transfer Data

    7.4 Limitations of Nucleate Boiling Processes and the Maximum Heat Flux Transition

    7.5 Minimum Heat Flux Conditions

    7.6 Film Boiling

    7.7 Transition Boiling

    References

    Problems

    8 Other Aspects of Boiling and Evaporation in an Extensive Ambient

    8.1 Additional Parametric Effects on Pool Boiling

    8.2 The Leidenfrost Phenomenon

    8.3 Fluid-Wall Interactions and Disjoining Pressure Effects

    8.4 Pool Boiling Heat Transfer On Micro and Nano Structured Surfaces

    8.5 Fundamentals of Pool Boiling in Binary Mixtures

    References

    Problems

    9 External Condensation

    9.1 Heterogeneous Nucleation in Vapors

    9.2 Dropwise Condensation

    9.3 Film Condensation on a Flat, Vertical Surface

    9.4 Film Condensation on Cylinders and Axisymmetric Bodies

    9.5 Effects of Vapor Motion and Interfacial Waves

    9.6 Condensation in the Presence of a Noncondensable Gas

    9.7 Enhancement of Condensation Heat Transfer

    References

    Problems

     

    PART 3: INTERNAL FLOW CONVECTIVE BOILING AND CONDENSATION

    10 Introduction to Two-Phase Flow

    10.1 Two-Phase Flow Regimes

    10.2 Basic Models and Governing Equations for One-Dimensional Two-Phase Flow

    10.3 Determination of the Two-Phase Multiplier and Void Fraction

    10.4 Analytical Models of Annular Flow

    10.5 Effects of Flow Passage Size and Geometry

    References

    Problems

    11 Internal Convective Condensation

    11.1 Regimes of Convective Condensation in Conventional (Macro) Tubes

    11.2 Analytical Modeling of Downflow Internal Convective Condensation

    11.3 Correlation Methods for Convective Condensation Heat Transfer

    11.4 Convective Condensation in Microchannels, Advanced Modeling, and Special Topics

    11.5 Internal Convective Condensation of Binary Mixtures

    References

    Problems

    12 Convective Boiling in Tubes and Channels

    12.1 Regimes of Convective Boiling in Conventional (Macro) Tubes

    12.2 Onset of Boiling in Internal Flows

    12.3 Subcooled Flow Boiling

    12.4 Saturated Flow Boiling

    12.5 Critical Heat Flux Conditions for Internal Flow Boiling

    12.6 Post-CHF Internal Flow Boiling

    12.7 Internal Flow Boiling in Microchannels and Complex Enhanced Flow Passages

    12.9 Internal Flow Boiling of Binary Mixtures

    References

    Problems

    Appendix I Basic Elements of the Kinetic Theory of Gases

    Appendix II Saturation Properties of Selected Fluids

    Appendix III Analysis Details for the Molecular Theory of Capillarity

    Index

    Biography

    Van P. Carey is a Professor in the Mechanical Engineering Department, and holds the A. Richard Newton Chair in Engineering at the University of California at Berkeley. Carey is a Fellow of the American Society of Mechanical Engineers (ASME) and the American Association for the Advancement of Science, and he has served as Chair of the Heat Transfer Division of ASME. Carey has received the James Harry Potter Gold Medal from the American Society of Mechanical Engineers (2004) for eminent achievement in thermodynamics, the Heat Transfer Memorial Award in the Science category (2007) from the American Society of Mechanical Engineers. He is also a three-time recipient of the Hewlett Packard Research Innovation Award for his research on electronics thermal management and energy efficiency (2008, 2009, 2010), and Carey received the 2014 Thermophysics Award from the American Institute of Aeronautics and Astronautics.